/************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ #include "oox/helper/binaryinputstream.hxx" #include #include #include #include #include #include #include "oox/helper/binaryoutputstream.hxx" namespace oox { // ============================================================================ using namespace ::com::sun::star::io; using namespace ::com::sun::star::uno; using ::rtl::OString; using ::rtl::OStringBuffer; using ::rtl::OStringToOUString; using ::rtl::OUString; using ::rtl::OUStringBuffer; namespace { const sal_Int32 INPUTSTREAM_BUFFERSIZE = 0x8000; } // namespace // ============================================================================ OString BinaryInputStream::readNulCharArray() { OStringBuffer aBuffer; for( sal_uInt8 nChar = readuInt8(); !mbEof && (nChar > 0); readValue( nChar ) ) aBuffer.append( static_cast< sal_Char >( nChar ) ); return aBuffer.makeStringAndClear(); } OUString BinaryInputStream::readNulCharArrayUC( rtl_TextEncoding eTextEnc ) { return OStringToOUString( readNulCharArray(), eTextEnc ); } OUString BinaryInputStream::readNulUnicodeArray() { OUStringBuffer aBuffer; for( sal_uInt16 nChar = readuInt16(); !mbEof && (nChar > 0); readValue( nChar ) ) aBuffer.append( static_cast< sal_Unicode >( nChar ) ); return aBuffer.makeStringAndClear(); } OString BinaryInputStream::readCharArray( sal_Int32 nChars, bool bAllowNulChars ) { if( nChars <= 0 ) return OString(); ::std::vector< sal_uInt8 > aBuffer; sal_Int32 nCharsRead = readArray( aBuffer, nChars ); if( nCharsRead <= 0 ) return OString(); aBuffer.resize( static_cast< size_t >( nCharsRead ) ); if( !bAllowNulChars ) ::std::replace( aBuffer.begin(), aBuffer.end(), '\0', '?' ); return OString( reinterpret_cast< sal_Char* >( &aBuffer.front() ), nCharsRead ); } OUString BinaryInputStream::readCharArrayUC( sal_Int32 nChars, rtl_TextEncoding eTextEnc, bool bAllowNulChars ) { return OStringToOUString( readCharArray( nChars, bAllowNulChars ), eTextEnc ); } OUString BinaryInputStream::readUnicodeArray( sal_Int32 nChars, bool bAllowNulChars ) { if( nChars <= 0 ) return OUString(); ::std::vector< sal_uInt16 > aBuffer; sal_Int32 nCharsRead = readArray( aBuffer, nChars ); if( nCharsRead <= 0 ) return OUString(); aBuffer.resize( static_cast< size_t >( nCharsRead ) ); if( !bAllowNulChars ) ::std::replace( aBuffer.begin(), aBuffer.begin() + nCharsRead, '\0', '?' ); OUStringBuffer aStringBuffer; aStringBuffer.ensureCapacity( nCharsRead ); for( ::std::vector< sal_uInt16 >::iterator aIt = aBuffer.begin(), aEnd = aBuffer.end(); aIt != aEnd; ++aIt ) aStringBuffer.append( static_cast< sal_Unicode >( *aIt ) ); return aStringBuffer.makeStringAndClear(); } OUString BinaryInputStream::readCompressedUnicodeArray( sal_Int32 nChars, bool bCompressed, bool bAllowNulChars ) { return bCompressed ? // ISO-8859-1 maps all byte values 0xHH to the same Unicode code point U+00HH readCharArrayUC( nChars, RTL_TEXTENCODING_ISO_8859_1, bAllowNulChars ) : readUnicodeArray( nChars, bAllowNulChars ); } void BinaryInputStream::copyToStream( BinaryOutputStream& rOutStrm, sal_Int64 nBytes, sal_Int32 nAtomSize ) { if( nBytes > 0 ) { // make buffer size a multiple of the passed atom size sal_Int32 nBufferSize = getLimitedValue< sal_Int32, sal_Int64 >( nBytes, 0, (INPUTSTREAM_BUFFERSIZE / nAtomSize) * nAtomSize ); StreamDataSequence aBuffer( nBufferSize ); while( nBytes > 0 ) { sal_Int32 nReadSize = getLimitedValue< sal_Int32, sal_Int64 >( nBytes, 0, nBufferSize ); sal_Int32 nBytesRead = readData( aBuffer, nReadSize, nAtomSize ); rOutStrm.writeData( aBuffer ); if( nReadSize == nBytesRead ) nBytes -= nReadSize; else nBytes = 0; } } } // ============================================================================ BinaryXInputStream::BinaryXInputStream( const Reference< XInputStream >& rxInStrm, bool bAutoClose ) : BinaryStreamBase( Reference< XSeekable >( rxInStrm, UNO_QUERY ).is() ), BinaryXSeekableStream( Reference< XSeekable >( rxInStrm, UNO_QUERY ) ), maBuffer( INPUTSTREAM_BUFFERSIZE ), mxInStrm( rxInStrm ), mbAutoClose( bAutoClose && rxInStrm.is() ) { mbEof = !mxInStrm.is(); } BinaryXInputStream::~BinaryXInputStream() { close(); } void BinaryXInputStream::close() { OSL_ENSURE( !mbAutoClose || mxInStrm.is(), "BinaryXInputStream::close - invalid call" ); if( mbAutoClose && mxInStrm.is() ) try { mxInStrm->closeInput(); } catch( Exception& ) { OSL_ENSURE( false, "BinaryXInputStream::close - closing input stream failed" ); } mxInStrm.clear(); mbAutoClose = false; BinaryXSeekableStream::close(); } sal_Int32 BinaryXInputStream::readData( StreamDataSequence& orData, sal_Int32 nBytes, size_t /*nAtomSize*/ ) { sal_Int32 nRet = 0; if( !mbEof && (nBytes > 0) ) try { nRet = mxInStrm->readBytes( orData, nBytes ); mbEof = nRet != nBytes; } catch( Exception& ) { mbEof = true; } return nRet; } sal_Int32 BinaryXInputStream::readMemory( void* opMem, sal_Int32 nBytes, size_t nAtomSize ) { sal_Int32 nRet = 0; if( !mbEof && (nBytes > 0) ) { sal_Int32 nBufferSize = getLimitedValue< sal_Int32, sal_Int32 >( nBytes, 0, INPUTSTREAM_BUFFERSIZE ); sal_uInt8* opnMem = reinterpret_cast< sal_uInt8* >( opMem ); while( !mbEof && (nBytes > 0) ) { sal_Int32 nReadSize = getLimitedValue< sal_Int32, sal_Int32 >( nBytes, 0, nBufferSize ); sal_Int32 nBytesRead = readData( maBuffer, nReadSize, nAtomSize ); if( nBytesRead > 0 ) memcpy( opnMem, maBuffer.getConstArray(), static_cast< size_t >( nBytesRead ) ); opnMem += nBytesRead; nBytes -= nBytesRead; nRet += nBytesRead; } } return nRet; } void BinaryXInputStream::skip( sal_Int32 nBytes, size_t /*nAtomSize*/ ) { if( !mbEof ) try { mxInStrm->skipBytes( nBytes ); } catch( Exception& ) { mbEof = true; } } // ============================================================================ SequenceInputStream::SequenceInputStream( const StreamDataSequence& rData ) : BinaryStreamBase( true ), SequenceSeekableStream( rData ) { } sal_Int32 SequenceInputStream::readData( StreamDataSequence& orData, sal_Int32 nBytes, size_t /*nAtomSize*/ ) { sal_Int32 nReadBytes = 0; if( !mbEof ) { nReadBytes = getMaxBytes( nBytes ); orData.realloc( nReadBytes ); if( nReadBytes > 0 ) memcpy( orData.getArray(), mpData->getConstArray() + mnPos, static_cast< size_t >( nReadBytes ) ); mnPos += nReadBytes; mbEof = nReadBytes < nBytes; } return nReadBytes; } sal_Int32 SequenceInputStream::readMemory( void* opMem, sal_Int32 nBytes, size_t /*nAtomSize*/ ) { sal_Int32 nReadBytes = 0; if( !mbEof ) { nReadBytes = getMaxBytes( nBytes ); if( nReadBytes > 0 ) memcpy( opMem, mpData->getConstArray() + mnPos, static_cast< size_t >( nReadBytes ) ); mnPos += nReadBytes; mbEof = nReadBytes < nBytes; } return nReadBytes; } void SequenceInputStream::skip( sal_Int32 nBytes, size_t /*nAtomSize*/ ) { if( !mbEof ) { sal_Int32 nSkipBytes = getMaxBytes( nBytes ); mnPos += nSkipBytes; mbEof = nSkipBytes < nBytes; } } // ============================================================================ RelativeInputStream::RelativeInputStream( BinaryInputStream& rInStrm, sal_Int64 nSize ) : BinaryStreamBase( rInStrm.isSeekable() ), mpInStrm( &rInStrm ), mnStartPos( rInStrm.tell() ), mnRelPos( 0 ) { sal_Int64 nRemaining = rInStrm.getRemaining(); mnSize = (nRemaining >= 0) ? ::std::min( nSize, nRemaining ) : nSize; mbEof = mbEof || rInStrm.isEof() || (mnSize < 0); } sal_Int64 RelativeInputStream::size() const { return mpInStrm ? mnSize : -1; } sal_Int64 RelativeInputStream::tell() const { return mpInStrm ? mnRelPos : -1; } void RelativeInputStream::seek( sal_Int64 nPos ) { if( mpInStrm && isSeekable() && (mnStartPos >= 0) ) { mnRelPos = getLimitedValue< sal_Int64, sal_Int64 >( nPos, 0, mnSize ); mpInStrm->seek( mnStartPos + mnRelPos ); mbEof = (mnRelPos != nPos) || mpInStrm->isEof(); } } void RelativeInputStream::close() { mpInStrm = 0; mbEof = true; } sal_Int32 RelativeInputStream::readData( StreamDataSequence& orData, sal_Int32 nBytes, size_t nAtomSize ) { sal_Int32 nReadBytes = 0; if( !mbEof ) { sal_Int32 nMaxBytes = getMaxBytes( nBytes ); nReadBytes = mpInStrm->readData( orData, nMaxBytes, nAtomSize ); mnRelPos += nReadBytes; mbEof = (nMaxBytes < nBytes) || mpInStrm->isEof(); } return nReadBytes; } sal_Int32 RelativeInputStream::readMemory( void* opMem, sal_Int32 nBytes, size_t nAtomSize ) { sal_Int32 nReadBytes = 0; if( !mbEof ) { sal_Int32 nMaxBytes = getMaxBytes( nBytes ); nReadBytes = mpInStrm->readMemory( opMem, nMaxBytes, nAtomSize ); mnRelPos += nReadBytes; mbEof = (nMaxBytes < nBytes) || mpInStrm->isEof(); } return nReadBytes; } void RelativeInputStream::skip( sal_Int32 nBytes, size_t nAtomSize ) { if( !mbEof ) { sal_Int32 nSkipBytes = getMaxBytes( nBytes ); mpInStrm->skip( nSkipBytes, nAtomSize ); mnRelPos += nSkipBytes; mbEof = nSkipBytes < nBytes; } } // ============================================================================ } // namespace oox