/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_slideshow.hxx" // must be first #include #include #include #include #include #include #include #include #include "drawshapesubsetting.hxx" #include "drawshape.hxx" #include #include #include #include using namespace ::com::sun::star; namespace slideshow { namespace internal { ////////////////////////////////////////////////////////////////////// // // Private methods // ////////////////////////////////////////////////////////////////////// void DrawShapeSubsetting::ensureInitializedNodeTree() const { ENSURE_OR_THROW( mpMtf, "DrawShapeSubsetting::ensureInitializedNodeTree(): Invalid mtf" ); if( mbNodeTreeInitialized ) return; // done, already initialized. // init doctree vector maActionClassVector.clear(); maActionClassVector.reserve( mpMtf->GetActionCount() ); // search metafile for text output MetaAction* pCurrAct; sal_Int32 nActionIndex(0); sal_Int32 nLastTextActionIndex(0); for( pCurrAct = mpMtf->FirstAction(); pCurrAct; pCurrAct = mpMtf->NextAction() ) { // check for one of our special text doctree comments switch( pCurrAct->GetType() ) { case META_COMMENT_ACTION: { MetaCommentAction* pAct = static_cast(pCurrAct); // skip comment if not a special XTEXT comment if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT", 5 ) == COMPARE_EQUAL ) { // fill classification vector with NOOPs, // then insert corresponding classes at // the given index maActionClassVector.resize( nActionIndex+1, CLASS_NOOP ); if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT_EOC" ) == COMPARE_EQUAL ) { // special, because can happen // in-between of portions - set // character-end classificator at // given index (relative to last text // action). const sal_Int32 nIndex( nLastTextActionIndex + pAct->GetValue() ); ENSURE_OR_THROW( static_cast< ::std::size_t >(nIndex) < maActionClassVector.size(), "DrawShapeSubsetting::ensureInitializedNodeTree(): sentence index out of range" ); maActionClassVector[ nIndex ] = CLASS_CHARACTER_CELL_END; } else if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT_EOW" ) == COMPARE_EQUAL ) { // special, because can happen // in-between of portions - set // word-end classificator at given // index (relative to last text // action). const sal_Int32 nIndex( nLastTextActionIndex + pAct->GetValue() ); ENSURE_OR_THROW( static_cast< ::std::size_t >(nIndex) < maActionClassVector.size(), "DrawShapeSubsetting::ensureInitializedNodeTree(): sentence index out of range" ); maActionClassVector[ nIndex ] = CLASS_WORD_END; } else if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT_EOS" ) == COMPARE_EQUAL ) { // special, because can happen // in-between of portions - set // sentence-end classificator at given // index (relative to last text // action). const sal_Int32 nIndex( nLastTextActionIndex + pAct->GetValue() ); ENSURE_OR_THROW( static_cast< ::std::size_t >(nIndex) < maActionClassVector.size(), "DrawShapeSubsetting::ensureInitializedNodeTree(): sentence index out of range" ); maActionClassVector[ nIndex ] = CLASS_SENTENCE_END; } else if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT_EOL" ) == COMPARE_EQUAL ) { maActionClassVector[ nActionIndex ] = CLASS_LINE_END; } else if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT_EOP" ) == COMPARE_EQUAL ) { maActionClassVector[ nActionIndex ] = CLASS_PARAGRAPH_END; } else if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT_PAINTSHAPE_END" ) == COMPARE_EQUAL ) { maActionClassVector[ nActionIndex ] = CLASS_SHAPE_END; } else if( pAct->GetComment().CompareIgnoreCaseToAscii( "XTEXT_PAINTSHAPE_BEGIN" ) == COMPARE_EQUAL ) { maActionClassVector[ nActionIndex ] = CLASS_SHAPE_START; } } ++nActionIndex; break; } case META_TEXT_ACTION: case META_TEXTARRAY_ACTION: case META_STRETCHTEXT_ACTION: nLastTextActionIndex = nActionIndex; // fallthrough intended default: // comment action and all actions not // explicitely handled here: nActionIndex += getNextActionOffset(pCurrAct); break; } } mbNodeTreeInitialized = true; } void DrawShapeSubsetting::updateSubsetBounds( const SubsetEntry& rSubsetEntry ) { // TODO(F1): This removes too much from non-contiguous subsets mnMinSubsetActionIndex = ::std::min( mnMinSubsetActionIndex, rSubsetEntry.mnStartActionIndex ); mnMaxSubsetActionIndex = ::std::max( mnMaxSubsetActionIndex, rSubsetEntry.mnEndActionIndex ); } void DrawShapeSubsetting::updateSubsets() { maCurrentSubsets.clear(); if( !maSubsetShapes.empty() ) { if( maSubset.isEmpty() ) { // non-subsetted node, with some child subsets // that subtract from it maCurrentSubsets.push_back( DocTreeNode( 0, mnMinSubsetActionIndex, DocTreeNode::NODETYPE_INVALID ) ); maCurrentSubsets.push_back( DocTreeNode( mnMaxSubsetActionIndex, maActionClassVector.size(), DocTreeNode::NODETYPE_INVALID ) ); } else { // subsetted node, from which some further child // subsets subtract content maCurrentSubsets.push_back( DocTreeNode( maSubset.getStartIndex(), mnMinSubsetActionIndex, DocTreeNode::NODETYPE_INVALID ) ); maCurrentSubsets.push_back( DocTreeNode( mnMaxSubsetActionIndex, maSubset.getEndIndex(), DocTreeNode::NODETYPE_INVALID ) ); } } else { // no further child subsets, simply add our subset (if any) if( !maSubset.isEmpty() ) { // subsetted node, without any subset children maCurrentSubsets.push_back( maSubset ); } } } ////////////////////////////////////////////////////////////////////// // // Public methods // ////////////////////////////////////////////////////////////////////// DrawShapeSubsetting::DrawShapeSubsetting() : maActionClassVector(), mpMtf(), maSubset(), maSubsetShapes(), mnMinSubsetActionIndex( SAL_MAX_INT32 ), mnMaxSubsetActionIndex(0), maCurrentSubsets(), mbNodeTreeInitialized( false ) { } DrawShapeSubsetting::DrawShapeSubsetting( const GDIMetaFileSharedPtr& rMtf ) : maActionClassVector(), mpMtf( rMtf ), maSubset(), maSubsetShapes(), mnMinSubsetActionIndex( SAL_MAX_INT32 ), mnMaxSubsetActionIndex(0), maCurrentSubsets(), mbNodeTreeInitialized( false ) { ENSURE_OR_THROW( mpMtf, "DrawShapeSubsetting::DrawShapeSubsetting(): Invalid metafile" ); initCurrentSubsets(); } DrawShapeSubsetting::DrawShapeSubsetting( const DocTreeNode& rShapeSubset, const GDIMetaFileSharedPtr& rMtf ) : maActionClassVector(), mpMtf( rMtf ), maSubset( rShapeSubset ), maSubsetShapes(), mnMinSubsetActionIndex( SAL_MAX_INT32 ), mnMaxSubsetActionIndex(0), maCurrentSubsets(), mbNodeTreeInitialized( false ) { ENSURE_OR_THROW( mpMtf, "DrawShapeSubsetting::DrawShapeSubsetting(): Invalid metafile" ); initCurrentSubsets(); } void DrawShapeSubsetting::reset() { maActionClassVector.clear(); mpMtf.reset(); maSubset.reset(); maSubsetShapes.clear(); mnMinSubsetActionIndex = SAL_MAX_INT32; mnMaxSubsetActionIndex = 0; maCurrentSubsets.clear(); mbNodeTreeInitialized = false; } void DrawShapeSubsetting::reset( const ::boost::shared_ptr< GDIMetaFile >& rMtf ) { reset(); mpMtf = rMtf; initCurrentSubsets(); } void DrawShapeSubsetting::reset( const DocTreeNode& rShapeSubset, const ::boost::shared_ptr< GDIMetaFile >& rMtf ) { reset(); mpMtf = rMtf; maSubset = rShapeSubset; initCurrentSubsets(); } void DrawShapeSubsetting::initCurrentSubsets() { // only add subset to vector, if it's not empty - that's // because the vector's content is later literally used // for e.g. painting. if( !maSubset.isEmpty() ) maCurrentSubsets.push_back( maSubset ); } DocTreeNode DrawShapeSubsetting::getSubsetNode() const { return maSubset; } bool DrawShapeSubsetting::hasSubsetShapes() const { return !maSubsetShapes.empty(); } AttributableShapeSharedPtr DrawShapeSubsetting::getSubsetShape( const DocTreeNode& rTreeNode ) const { RTL_LOGFILE_CONTEXT( aLog, "::presentation::internal::DrawShapeSubsetting::getSubsetShape()" ); // subset shape already created for this DocTreeNode? SubsetEntry aEntry; aEntry.mnStartActionIndex = rTreeNode.getStartIndex(); aEntry.mnEndActionIndex = rTreeNode.getEndIndex(); ShapeSet::const_iterator aIter; if( (aIter=maSubsetShapes.find( aEntry )) != maSubsetShapes.end() ) { // already created, return found entry return aIter->mpShape; } return AttributableShapeSharedPtr(); } void DrawShapeSubsetting::addSubsetShape( const AttributableShapeSharedPtr& rShape ) { RTL_LOGFILE_CONTEXT( aLog, "::presentation::internal::DrawShapeSubsetting::addSubsetShape()" ); // subset shape already created for this DocTreeNode? SubsetEntry aEntry; const DocTreeNode& rEffectiveSubset( rShape->getSubsetNode() ); aEntry.mnStartActionIndex = rEffectiveSubset.getStartIndex(); aEntry.mnEndActionIndex = rEffectiveSubset.getEndIndex(); ShapeSet::const_iterator aIter; if( (aIter=maSubsetShapes.find( aEntry )) != maSubsetShapes.end() ) { // already created, increment use count and return // safe cast, since set order does not depend on // mnSubsetQueriedCount const_cast(*aIter).mnSubsetQueriedCount++; } else { // not yet created, init entry aEntry.mnSubsetQueriedCount = 1; aEntry.mpShape = rShape; maSubsetShapes.insert( aEntry ); // update cached subset borders updateSubsetBounds( aEntry ); updateSubsets(); } } bool DrawShapeSubsetting::revokeSubsetShape( const AttributableShapeSharedPtr& rShape ) { RTL_LOGFILE_CONTEXT( aLog, "::presentation::internal::DrawShapeSubsetting::revokeSubsetShape()" ); // lookup subset shape SubsetEntry aEntry; const DocTreeNode& rEffectiveSubset( rShape->getSubsetNode() ); aEntry.mnStartActionIndex = rEffectiveSubset.getStartIndex(); aEntry.mnEndActionIndex = rEffectiveSubset.getEndIndex(); ShapeSet::iterator aIter; if( (aIter=maSubsetShapes.find( aEntry )) == maSubsetShapes.end() ) return false; // not found, subset was never queried // last client of the subset revoking? if( aIter->mnSubsetQueriedCount > 1 ) { // no, still clients out there. Just decrement use count // safe cast, since order does not depend on mnSubsetQueriedCount const_cast(*aIter).mnSubsetQueriedCount--; VERBOSE_TRACE( "Subset summary: shape 0x%X, %d open subsets, revoked subset has refcount %d", this, maSubsetShapes.size(), aIter->mnSubsetQueriedCount ); return false; // not the last client } VERBOSE_TRACE( "Subset summary: shape 0x%X, %d open subsets, cleared subset has range [%d,%d]", this, maSubsetShapes.size(), aEntry.mnStartActionIndex, aEntry.mnEndActionIndex ); // yes, remove from set maSubsetShapes.erase( aIter ); // update currently active subset for _our_ shape (the // part of this shape that is visible, i.e. not displayed // in subset shapes) // ====================================================== // init bounds mnMinSubsetActionIndex = SAL_MAX_INT32; mnMaxSubsetActionIndex = 0; // TODO(P2): This is quite expensive, when // after every subset effect end, we have to scan // the whole shape set // determine new subset range ::std::for_each( maSubsetShapes.begin(), maSubsetShapes.end(), ::boost::bind(&DrawShapeSubsetting::updateSubsetBounds, this, _1 ) ); updateSubsets(); return true; } namespace { /** Iterate over all action classification entries in the given range, pass each element range found to the given functor. This method extracts, for each of the different action classifications, the count and the ranges for each of them, and calls the provided functor with that information. @tpl FunctorT This is the functor's operator() calling signature, with eCurrElemClassification denoting the current classification type the functor is called for, nCurrElemCount the running total of elements visited for the given class (starting from 0), and rCurrElemBegin/rCurrElemEnd the range of the current element (i.e. the iterators from the start to the end of this element).
                bool operator()( IndexClassificator								 eCurrElemClassification
                				 sal_Int32										 nCurrElemCount,
								 const IndexClassificatorVector::const_iterator& rCurrElemBegin,
								 const IndexClassificatorVector::const_iterator& rCurrElemEnd );
                
If the functor returns false, iteration over the shapes is immediately stopped. @param io_pFunctor This functor is called for every shape found. @param rBegin Start of range to iterate over @param rEnd End of range to iterate over @return the number of shapes found in the metafile */ template< typename FunctorT > void iterateActionClassifications( FunctorT& io_rFunctor, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rEnd ) { sal_Int32 nCurrShapeCount( 0 ); sal_Int32 nCurrParaCount( 0 ); sal_Int32 nCurrLineCount( 0 ); sal_Int32 nCurrSentenceCount( 0 ); sal_Int32 nCurrWordCount( 0 ); sal_Int32 nCurrCharCount( 0 ); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastShapeStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastParaStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastLineStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastSentenceStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastWordStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aLastCharStart(rBegin); DrawShapeSubsetting::IndexClassificatorVector::const_iterator aNext; DrawShapeSubsetting::IndexClassificatorVector::const_iterator aCurr( rBegin ); while( aCurr != rEnd ) { // aNext will hold an iterator to the next element // (or the past-the-end iterator, if aCurr // references the last element). Used to pass a // valid half-open range to the functors. aNext = aCurr; ++aNext; switch( *aCurr ) { default: ENSURE_OR_THROW( false, "Unexpected type in iterateDocShapes()" ); case DrawShapeSubsetting::CLASS_NOOP: // ignore NOOP actions break; case DrawShapeSubsetting::CLASS_SHAPE_START: // regardless of ending action // classifications before: a new shape // always also starts contained elements // anew aLastShapeStart = aLastParaStart = aLastLineStart = aLastSentenceStart = aLastWordStart = aLastCharStart = aCurr; break; case DrawShapeSubsetting::CLASS_SHAPE_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_SHAPE_END, nCurrShapeCount, aLastShapeStart, aNext ) ) { return; } ++nCurrShapeCount; // FALLTHROUGH intended: shape end also // ends lines case DrawShapeSubsetting::CLASS_PARAGRAPH_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_PARAGRAPH_END, nCurrParaCount, aLastParaStart, aNext ) ) { return; } ++nCurrParaCount; aLastParaStart = aNext; // FALLTHROUGH intended: para end also // ends line case DrawShapeSubsetting::CLASS_LINE_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_LINE_END, nCurrLineCount, aLastLineStart, aNext ) ) { return; } ++nCurrLineCount; aLastLineStart = aNext; if( *aCurr == DrawShapeSubsetting::CLASS_LINE_END ) { // DON'T fall through here, as a line // does NOT end neither a sentence, // nor a word. OTOH, all parent // structures (paragraph and shape), // which itself fall through to this // code, DO end word, sentence and // character cell. // TODO(F1): Maybe a line should end a // character cell, OTOH? break; } // FALLTHROUGH intended case DrawShapeSubsetting::CLASS_SENTENCE_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_SENTENCE_END, nCurrSentenceCount, aLastSentenceStart, aNext ) ) { return; } ++nCurrSentenceCount; aLastSentenceStart = aNext; // FALLTHROUGH intended case DrawShapeSubsetting::CLASS_WORD_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_WORD_END, nCurrWordCount, aLastWordStart, aNext ) ) { return; } ++nCurrWordCount; aLastWordStart = aNext; // FALLTHROUGH intended case DrawShapeSubsetting::CLASS_CHARACTER_CELL_END: if( !io_rFunctor( DrawShapeSubsetting::CLASS_CHARACTER_CELL_END, nCurrCharCount, aLastCharStart, aNext ) ) { return; } ++nCurrCharCount; aLastCharStart = aNext; break; } aCurr = aNext; } } DrawShapeSubsetting::IndexClassificator mapDocTreeNode( DocTreeNode::NodeType eNodeType ) { switch( eNodeType ) { case DocTreeNode::NODETYPE_INVALID: // FALLTHROUGH intended default: OSL_ENSURE(false, "DrawShapeSubsetting::mapDocTreeNode(): unexpected node type"); return DrawShapeSubsetting::CLASS_NOOP; case DocTreeNode::NODETYPE_LOGICAL_SHAPE: // FALLTHROUGH intended case DocTreeNode::NODETYPE_FORMATTING_SHAPE: return DrawShapeSubsetting::CLASS_SHAPE_END; case DocTreeNode::NODETYPE_FORMATTING_LINE: return DrawShapeSubsetting::CLASS_LINE_END; case DocTreeNode::NODETYPE_LOGICAL_PARAGRAPH: return DrawShapeSubsetting::CLASS_PARAGRAPH_END; case DocTreeNode::NODETYPE_LOGICAL_SENTENCE: return DrawShapeSubsetting::CLASS_SENTENCE_END; case DocTreeNode::NODETYPE_LOGICAL_WORD: return DrawShapeSubsetting::CLASS_WORD_END; case DocTreeNode::NODETYPE_LOGICAL_CHARACTER_CELL: return DrawShapeSubsetting::CLASS_CHARACTER_CELL_END; }; } /// Counts number of class occurences class CountClassFunctor { public: CountClassFunctor( DrawShapeSubsetting::IndexClassificator eClass ) : meClass( eClass ), mnCurrCount(0) { } bool operator()( DrawShapeSubsetting::IndexClassificator eCurrElemClassification, sal_Int32 /*nCurrElemCount*/, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& /*rCurrElemBegin*/, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& /*rCurrElemEnd*/ ) { if( eCurrElemClassification == meClass ) ++mnCurrCount; return true; // never stop, count all occurences } sal_Int32 getCount() const { return mnCurrCount; } private: DrawShapeSubsetting::IndexClassificator meClass; sal_Int32 mnCurrCount; }; } sal_Int32 DrawShapeSubsetting::implGetNumberOfTreeNodes( const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rEnd, DocTreeNode::NodeType eNodeType ) const { const IndexClassificator eRequestedClass( mapDocTreeNode( eNodeType ) ); // create a counting functor for the requested class of // actions CountClassFunctor aFunctor( eRequestedClass ); // count all occurences in the given range iterateActionClassifications( aFunctor, rBegin, rEnd ); return aFunctor.getCount(); } sal_Int32 DrawShapeSubsetting::getNumberOfTreeNodes( DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); return implGetNumberOfTreeNodes( maActionClassVector.begin(), maActionClassVector.end(), eNodeType ); } namespace { /** This functor finds the nth occurrence of a given action class. The operator() compares the given index value with the requested index, as given on the functor's constructor. Then, the operator() returns false, denoting that the requested action is found. */ class FindNthElementFunctor { public: FindNthElementFunctor( sal_Int32 nNodeIndex, DrawShapeSubsetting::IndexClassificator eClass ) : mnNodeIndex( nNodeIndex ), meClass( eClass ) { } bool operator()( DrawShapeSubsetting::IndexClassificator eCurrElemClassification, sal_Int32 nCurrElemCount, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rCurrElemBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rCurrElemEnd ) { if( eCurrElemClassification == meClass && nCurrElemCount == mnNodeIndex ) { maLastBegin = rCurrElemBegin; maLastEnd = rCurrElemEnd; return false; // abort iteration, we've // already found what we've been // looking for } return true; // keep on truckin' } DrawShapeSubsetting::IndexClassificatorVector::const_iterator getBeginElement() const { return maLastBegin; } DrawShapeSubsetting::IndexClassificatorVector::const_iterator getEndElement() const { return maLastEnd; } private: sal_Int32 mnNodeIndex; DrawShapeSubsetting::IndexClassificatorVector::const_iterator maLastBegin; DrawShapeSubsetting::IndexClassificatorVector::const_iterator maLastEnd; DrawShapeSubsetting::IndexClassificator meClass; }; DocTreeNode makeTreeNode( const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rBegin, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rStart, const DrawShapeSubsetting::IndexClassificatorVector::const_iterator& rEnd, DocTreeNode::NodeType eNodeType ) { return DocTreeNode( ::std::distance(rBegin, rStart), ::std::distance(rBegin, rEnd), eNodeType ); } } DocTreeNode DrawShapeSubsetting::implGetTreeNode( const IndexClassificatorVector::const_iterator& rBegin, const IndexClassificatorVector::const_iterator& rEnd, sal_Int32 nNodeIndex, DocTreeNode::NodeType eNodeType ) const { const IndexClassificator eRequestedClass( mapDocTreeNode( eNodeType ) ); // create a nth element functor for the requested class of // actions, and nNodeIndex as the target index FindNthElementFunctor aFunctor( nNodeIndex, eRequestedClass ); // find given index in the given range iterateActionClassifications( aFunctor, rBegin, rEnd ); return makeTreeNode( maActionClassVector.begin(), aFunctor.getBeginElement(), aFunctor.getEndElement(), eNodeType ); } DocTreeNode DrawShapeSubsetting::getTreeNode( sal_Int32 nNodeIndex, DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); return implGetTreeNode( maActionClassVector.begin(), maActionClassVector.end(), nNodeIndex, eNodeType ); } sal_Int32 DrawShapeSubsetting::getNumberOfSubsetTreeNodes( const DocTreeNode& rParentNode, DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); // convert from vector indices to vector iterators const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aBegin( maActionClassVector.begin() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentBegin( aBegin + rParentNode.getStartIndex() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentEnd( aBegin + rParentNode.getEndIndex() ); return implGetNumberOfTreeNodes( aParentBegin, aParentEnd, eNodeType ); } DocTreeNode DrawShapeSubsetting::getSubsetTreeNode( const DocTreeNode& rParentNode, sal_Int32 nNodeIndex, DocTreeNode::NodeType eNodeType ) const { ensureInitializedNodeTree(); // convert from vector indices to vector iterators const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aBegin( maActionClassVector.begin() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentBegin( aBegin + rParentNode.getStartIndex() ); const DrawShapeSubsetting::IndexClassificatorVector::const_iterator aParentEnd( aBegin + rParentNode.getEndIndex() ); return implGetTreeNode( aParentBegin, aParentEnd, nNodeIndex, eNodeType ); } const VectorOfDocTreeNodes& DrawShapeSubsetting::getActiveSubsets() const { return maCurrentSubsets; } } }