/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ #include "precompiled_basic.hxx" #include "sal/config.h" #include #include #include #include #include #include "basic/sbx.hxx" #include "basic/sbxvar.hxx" #include "runtime.hxx" #include "osl/thread.h" #include "rtl/ref.hxx" #include "rtl/string.hxx" #include "rtl/ustring.hxx" #include "salhelper/simplereferenceobject.hxx" #include "tools/svwin.h" #undef max #include "dllmgr.hxx" /* Open issues: Only 32-bit Windows for now. Missing support for functions returning structs (see TODO in call()). Missing support for additional data types (64 bit integers, Any, ...; would trigger OSL_ASSERT(false) in various switches). It is assumed that the variables passed into SbiDllMgr::Call to represent the arguments and return value have types that exactly match the Declare statement; it would be better if this code had access to the function signature from the Declare statement, so that it could convert the passed variables accordingly. */ #if defined WNT // only 32-bit Windows, actually extern "C" { int __stdcall DllMgr_call32(FARPROC, void const * stack, std::size_t size); double __stdcall DllMgr_callFp(FARPROC, void const * stack, std::size_t size); } namespace { char * address(std::vector< char > & blob) { return blob.empty() ? 0 : &blob[0]; } SbError convert(rtl::OUString const & source, rtl::OString * target) { return source.convertToString( target, osl_getThreadTextEncoding(), (RTL_UNICODETOTEXT_FLAGS_UNDEFINED_ERROR | RTL_UNICODETOTEXT_FLAGS_INVALID_ERROR)) ? ERRCODE_NONE : ERRCODE_BASIC_BAD_ARGUMENT; //TODO: more specific errcode? } SbError convert(char const * source, sal_Int32 length, rtl::OUString * target) { return rtl_convertStringToUString( &target->pData, source, length, osl_getThreadTextEncoding(), (RTL_TEXTTOUNICODE_FLAGS_UNDEFINED_ERROR | RTL_TEXTTOUNICODE_FLAGS_MBUNDEFINED_ERROR | RTL_TEXTTOUNICODE_FLAGS_INVALID_ERROR)) ? ERRCODE_NONE : ERRCODE_BASIC_BAD_ARGUMENT; //TODO: more specific errcode? } struct UnmarshalData { UnmarshalData(SbxVariable * theVariable, void * theBuffer): variable(theVariable), buffer(theBuffer) {} SbxVariable * variable; void * buffer; }; struct StringData: public UnmarshalData { StringData(SbxVariable * theVariable, void * theBuffer, bool theSpecial): UnmarshalData(theVariable, theBuffer), special(theSpecial) {} bool special; }; class MarshalData: private boost::noncopyable { public: std::vector< char > * newBlob() { blobs_.push_front(std::vector< char >()); return &blobs_.front(); } std::vector< UnmarshalData > unmarshal; std::vector< StringData > unmarshalStrings; private: std::list< std::vector< char > > blobs_; }; std::size_t align(std::size_t address, std::size_t alignment) { // alignment = 2^k for some k >= 0 return (address + (alignment - 1)) & ~(alignment - 1); } char * align( std::vector< char > & blob, std::size_t alignment, std::size_t offset, std::size_t add) { std::vector< char >::size_type n = blob.size(); n = align(n - offset, alignment) + offset; //TODO: overflow in align() blob.resize(n + add); //TODO: overflow return address(blob) + n; } template< typename T > void add( std::vector< char > & blob, T const & data, std::size_t alignment, std::size_t offset) { *reinterpret_cast< T * >(align(blob, alignment, offset, sizeof (T))) = data; } std::size_t alignment(SbxVariable * variable) { OSL_ASSERT(variable != 0); if ((variable->GetType() & SbxARRAY) == 0) { switch (variable->GetType()) { case SbxINTEGER: return 2; case SbxLONG: case SbxSINGLE: case SbxSTRING: return 4; case SbxDOUBLE: return 8; case SbxOBJECT: { std::size_t n = 1; SbxArray * props = PTR_CAST(SbxObject, variable->GetObject())-> GetProperties(); for (sal_uInt16 i = 0; i < props->Count(); ++i) { n = std::max(n, alignment(props->Get(i))); } return n; } case SbxBOOL: case SbxBYTE: return 1; default: OSL_ASSERT(false); return 1; } } else { SbxDimArray * arr = PTR_CAST(SbxDimArray, variable->GetObject()); int dims = arr->GetDims(); std::vector< sal_Int32 > low(dims); for (int i = 0; i < dims; ++i) { sal_Int32 up; arr->GetDim32(i + 1, low[i], up); } return alignment(arr->Get32(&low[0])); } } SbError marshal( bool outer, SbxVariable * variable, bool special, std::vector< char > & blob, std::size_t offset, MarshalData & data); SbError marshalString( SbxVariable * variable, bool special, MarshalData & data, void ** buffer) { OSL_ASSERT(variable != 0 && buffer != 0); rtl::OString str; SbError e = convert(variable->GetString(), &str); if (e != ERRCODE_NONE) { return e; } std::vector< char > * blob = data.newBlob(); blob->insert( blob->begin(), str.getStr(), str.getStr() + str.getLength() + 1); *buffer = address(*blob); data.unmarshalStrings.push_back(StringData(variable, *buffer, special)); return ERRCODE_NONE; } SbError marshalStruct( SbxVariable * variable, std::vector< char > & blob, std::size_t offset, MarshalData & data) { OSL_ASSERT(variable != 0); SbxArray * props = PTR_CAST(SbxObject, variable->GetObject())-> GetProperties(); for (sal_uInt16 i = 0; i < props->Count(); ++i) { SbError e = marshal(false, props->Get(i), false, blob, offset, data); if (e != ERRCODE_NONE) { return e; } } return ERRCODE_NONE; } SbError marshalArray( SbxVariable * variable, std::vector< char > & blob, std::size_t offset, MarshalData & data) { OSL_ASSERT(variable != 0); SbxDimArray * arr = PTR_CAST(SbxDimArray, variable->GetObject()); int dims = arr->GetDims(); std::vector< sal_Int32 > low(dims); std::vector< sal_Int32 > up(dims); for (int i = 0; i < dims; ++i) { arr->GetDim32(i + 1, low[i], up[i]); } for (std::vector< sal_Int32 > idx = low;;) { SbError e = marshal( false, arr->Get32(&idx[0]), false, blob, offset, data); if (e != ERRCODE_NONE) { return e; } int i = dims - 1; while (idx[i] == up[i]) { idx[i] = low[i]; if (i == 0) { return ERRCODE_NONE; } --i; } ++idx[i]; } } // 8-aligned structs are only 4-aligned on stack, so alignment of members in // such structs must take that into account via "offset" SbError marshal( bool outer, SbxVariable * variable, bool special, std::vector< char > & blob, std::size_t offset, MarshalData & data) { OSL_ASSERT(variable != 0); SbxDataType eVarType = variable->GetType(); bool bByVal = (variable->GetFlags() & SBX_REFERENCE) == 0; if( !bByVal && !SbiRuntime::isVBAEnabled() && eVarType == SbxSTRING ) bByVal = true; if (bByVal) { if ((eVarType & SbxARRAY) == 0) { switch (eVarType) { case SbxINTEGER: add(blob, variable->GetInteger(), outer ? 4 : 2, offset); break; case SbxLONG: add(blob, variable->GetLong(), 4, offset); break; case SbxSINGLE: add(blob, variable->GetSingle(), 4, offset); break; case SbxDOUBLE: add(blob, variable->GetDouble(), outer ? 4 : 8, offset); break; case SbxSTRING: { void * p; SbError e = marshalString(variable, special, data, &p); if (e != ERRCODE_NONE) { return e; } add(blob, p, 4, offset); break; } case SbxOBJECT: { align(blob, outer ? 4 : alignment(variable), offset, 0); SbError e = marshalStruct(variable, blob, offset, data); if (e != ERRCODE_NONE) { return e; } break; } case SbxBOOL: add(blob, variable->GetBool(), outer ? 4 : 1, offset); break; case SbxBYTE: add(blob, variable->GetByte(), outer ? 4 : 1, offset); break; default: OSL_ASSERT(false); break; } } else { SbError e = marshalArray(variable, blob, offset, data); if (e != ERRCODE_NONE) { return e; } } } else { if ((eVarType & SbxARRAY) == 0) { switch (eVarType) { case SbxINTEGER: case SbxLONG: case SbxSINGLE: case SbxDOUBLE: case SbxBOOL: case SbxBYTE: add(blob, variable->data(), 4, offset); break; case SbxSTRING: { std::vector< char > * blob2 = data.newBlob(); void * p; SbError e = marshalString(variable, special, data, &p); if (e != ERRCODE_NONE) { return e; } add(*blob2, p, 4, 0); add(blob, address(*blob2), 4, offset); break; } case SbxOBJECT: { std::vector< char > * blob2 = data.newBlob(); SbError e = marshalStruct(variable, *blob2, 0, data); if (e != ERRCODE_NONE) { return e; } void * p = address(*blob2); if (outer) { data.unmarshal.push_back(UnmarshalData(variable, p)); } add(blob, p, 4, offset); break; } default: OSL_ASSERT(false); break; } } else { std::vector< char > * blob2 = data.newBlob(); SbError e = marshalArray(variable, *blob2, 0, data); if (e != ERRCODE_NONE) { return e; } void * p = address(*blob2); if (outer) { data.unmarshal.push_back(UnmarshalData(variable, p)); } add(blob, p, 4, offset); } } return ERRCODE_NONE; } template< typename T > T read(void const ** pointer) { T const * p = static_cast< T const * >(*pointer); *pointer = static_cast< void const * >(p + 1); return *p; } void const * unmarshal(SbxVariable * variable, void const * data) { OSL_ASSERT(variable != 0); if ((variable->GetType() & SbxARRAY) == 0) { switch (variable->GetType()) { case SbxINTEGER: variable->PutInteger(read< sal_Int16 >(&data)); break; case SbxLONG: variable->PutLong(read< sal_Int32 >(&data)); break; case SbxSINGLE: variable->PutSingle(read< float >(&data)); break; case SbxDOUBLE: variable->PutDouble(read< double >(&data)); break; case SbxSTRING: read< char * >(&data); // handled by unmarshalString break; case SbxOBJECT: { data = reinterpret_cast< void const * >( align( reinterpret_cast< sal_uIntPtr >(data), alignment(variable))); SbxArray * props = PTR_CAST(SbxObject, variable->GetObject())-> GetProperties(); for (sal_uInt16 i = 0; i < props->Count(); ++i) { data = unmarshal(props->Get(i), data); } break; } case SbxBOOL: variable->PutBool(read< sal_Bool >(&data)); break; case SbxBYTE: variable->PutByte(read< sal_uInt8 >(&data)); break; default: OSL_ASSERT(false); break; } } else { SbxDimArray * arr = PTR_CAST(SbxDimArray, variable->GetObject()); int dims = arr->GetDims(); std::vector< sal_Int32 > low(dims); std::vector< sal_Int32 > up(dims); for (int i = 0; i < dims; ++i) { arr->GetDim32(i + 1, low[i], up[i]); } for (std::vector< sal_Int32 > idx = low;;) { data = unmarshal(arr->Get32(&idx[0]), data); int i = dims - 1; while (idx[i] == up[i]) { idx[i] = low[i]; if (i == 0) { goto done; } --i; } ++idx[i]; } done:; } return data; } SbError unmarshalString(StringData const & data, SbxVariable & result) { rtl::OUString str; if (data.buffer != 0) { char const * p = static_cast< char const * >(data.buffer); sal_Int32 len; if (data.special) { len = static_cast< sal_Int32 >(result.GetULong()); if (len < 0) { // i.e., DWORD result >= 2^31 return ERRCODE_BASIC_BAD_ARGUMENT; //TODO: more specific errcode? } } else { len = rtl_str_getLength(p); } SbError e = convert(p, len, &str); if (e != ERRCODE_NONE) { return e; } } data.variable->PutString(String(str)); return ERRCODE_NONE; } struct ProcData { rtl::OString name; FARPROC proc; }; SbError call( rtl::OUString const & dll, ProcData const & proc, SbxArray * arguments, SbxVariable & result) { std::vector< char > stack; MarshalData data; // For DWORD GetLogicalDriveStringsA(DWORD nBufferLength, LPSTR lpBuffer) // from kernel32, upon return, filled lpBuffer length is result DWORD, which // requires special handling in unmarshalString; other functions might // require similar treatment, too: bool special = dll.equalsIgnoreAsciiCaseAsciiL( RTL_CONSTASCII_STRINGPARAM("KERNEL32.DLL")) && (proc.name == rtl::OString(RTL_CONSTASCII_STRINGPARAM("GetLogicalDriveStringsA"))); for (sal_uInt16 i = 1; i < (arguments == 0 ? 0 : arguments->Count()); ++i) { SbError e = marshal( true, arguments->Get(i), special && i == 2, stack, stack.size(), data); if (e != ERRCODE_NONE) { return e; } align(stack, 4, 0, 0); } switch (result.GetType()) { case SbxEMPTY: DllMgr_call32(proc.proc, address(stack), stack.size()); break; case SbxINTEGER: result.PutInteger( static_cast< sal_Int16 >( DllMgr_call32(proc.proc, address(stack), stack.size()))); break; case SbxLONG: result.PutLong( static_cast< sal_Int32 >( DllMgr_call32(proc.proc, address(stack), stack.size()))); break; case SbxSINGLE: result.PutSingle( static_cast< float >( DllMgr_callFp(proc.proc, address(stack), stack.size()))); break; case SbxDOUBLE: result.PutDouble( DllMgr_callFp(proc.proc, address(stack), stack.size())); break; case SbxSTRING: { char const * s1 = reinterpret_cast< char const * >( DllMgr_call32(proc.proc, address(stack), stack.size())); rtl::OUString s2; SbError e = convert(s1, rtl_str_getLength(s1), &s2); if (e != ERRCODE_NONE) { return e; } result.PutString(String(s2)); break; } case SbxOBJECT: //TODO DllMgr_call32(proc.proc, address(stack), stack.size()); break; case SbxBOOL: result.PutBool( static_cast< sal_Bool >( DllMgr_call32(proc.proc, address(stack), stack.size()))); break; case SbxBYTE: result.PutByte( static_cast< sal_uInt8 >( DllMgr_call32(proc.proc, address(stack), stack.size()))); break; default: OSL_ASSERT(false); break; } for (sal_uInt16 i = 1; i < (arguments == 0 ? 0 : arguments->Count()); ++i) { arguments->Get(i)->ResetFlag(SBX_REFERENCE); //TODO: skipped for errors?!? } for (std::vector< UnmarshalData >::iterator i(data.unmarshal.begin()); i != data.unmarshal.end(); ++i) { unmarshal(i->variable, i->buffer); } for (std::vector< StringData >::iterator i(data.unmarshalStrings.begin()); i != data.unmarshalStrings.end(); ++i) { SbError e = unmarshalString(*i, result); if (e != ERRCODE_NONE) { return e; } } return ERRCODE_NONE; } SbError getProcData(HMODULE handle, rtl::OUString const & name, ProcData * proc) { OSL_ASSERT(proc != 0); if ( !name.isEmpty() && name[0] == '@' ) { //TODO: "@" vs. "#"??? sal_Int32 n = name.copy(1).toInt32(); //TODO: handle bad input if (n <= 0 || n > 0xFFFF) { return ERRCODE_BASIC_BAD_ARGUMENT; //TODO: more specific errcode? } FARPROC p = GetProcAddress(handle, reinterpret_cast< LPCSTR >(n)); if (p != 0) { proc->name = rtl::OString(RTL_CONSTASCII_STRINGPARAM("#")) + rtl::OString::valueOf(n); proc->proc = p; return ERRCODE_NONE; } } else { rtl::OString name8; SbError e = convert(name, &name8); if (e != ERRCODE_NONE) { return e; } FARPROC p = GetProcAddress(handle, name8.getStr()); if (p != 0) { proc->name = name8; proc->proc = p; return ERRCODE_NONE; } sal_Int32 i = name8.indexOf('#'); if (i != -1) { name8 = name8.copy(0, i); p = GetProcAddress(handle, name8.getStr()); if (p != 0) { proc->name = name8; proc->proc = p; return ERRCODE_NONE; } } rtl::OString real( rtl::OString(RTL_CONSTASCII_STRINGPARAM("_")) + name8); p = GetProcAddress(handle, real.getStr()); if (p != 0) { proc->name = real; proc->proc = p; return ERRCODE_NONE; } real = name8 + rtl::OString(RTL_CONSTASCII_STRINGPARAM("A")); p = GetProcAddress(handle, real.getStr()); if (p != 0) { proc->name = real; proc->proc = p; return ERRCODE_NONE; } } return ERRCODE_BASIC_PROC_UNDEFINED; } struct Dll: public salhelper::SimpleReferenceObject { private: typedef std::map< rtl::OUString, ProcData > Procs; virtual ~Dll(); public: Dll(): handle(0) {} SbError getProc(rtl::OUString const & name, ProcData * proc); HMODULE handle; Procs procs; }; Dll::~Dll() { if (handle != 0 && !FreeLibrary(handle)) { OSL_TRACE("FreeLibrary(%p) failed with %u", handle, GetLastError()); } } SbError Dll::getProc(rtl::OUString const & name, ProcData * proc) { Procs::iterator i(procs.find(name)); if (i != procs.end()) { *proc = i->second; return ERRCODE_NONE; } SbError e = getProcData(handle, name, proc); if (e == ERRCODE_NONE) { procs.insert(Procs::value_type(name, *proc)); } return e; } rtl::OUString fullDllName(rtl::OUString const & name) { rtl::OUString full(name); if (full.indexOf('.') == -1) { full += rtl::OUString(RTL_CONSTASCII_USTRINGPARAM(".DLL")); } return full; } } struct SbiDllMgr::Impl: private boost::noncopyable { private: typedef std::map< rtl::OUString, rtl::Reference< Dll > > Dlls; public: Dll * getDll(rtl::OUString const & name); Dlls dlls; }; Dll * SbiDllMgr::Impl::getDll(rtl::OUString const & name) { Dlls::iterator i(dlls.find(name)); if (i == dlls.end()) { i = dlls.insert(Dlls::value_type(name, new Dll)).first; HMODULE h = LoadLibraryW(reinterpret_cast(name.getStr())); if (h == 0) { dlls.erase(i); return 0; } i->second->handle = h; } return i->second.get(); } SbError SbiDllMgr::Call( rtl::OUString const & function, rtl::OUString const & library, SbxArray * arguments, SbxVariable & result, bool cdeclConvention) { if (cdeclConvention) { return ERRCODE_BASIC_NOT_IMPLEMENTED; } rtl::OUString dllName(fullDllName(library)); Dll * dll = impl_->getDll(dllName); if (dll == 0) { return ERRCODE_BASIC_BAD_DLL_LOAD; } ProcData proc; SbError e = dll->getProc(function, &proc); if (e != ERRCODE_NONE) { return e; } return call(dllName, proc, arguments, result); } void SbiDllMgr::FreeDll(rtl::OUString const & library) { impl_->dlls.erase(library); } #else struct SbiDllMgr::Impl {}; SbError SbiDllMgr::Call( rtl::OUString const &, rtl::OUString const &, SbxArray *, SbxVariable &, bool) { return ERRCODE_BASIC_NOT_IMPLEMENTED; } void SbiDllMgr::FreeDll(rtl::OUString const &) {} #endif SbiDllMgr::SbiDllMgr(): impl_(new Impl) {} SbiDllMgr::~SbiDllMgr() {}