/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ #ifndef SC_INTERPRE_HXX #define SC_INTERPRE_HXX #include #include #include "formula/errorcodes.hxx" #include "cell.hxx" #include "scdll.hxx" #include "document.hxx" #include "scmatrix.hxx" #include #include class ScDocument; class SbxVariable; class ScBaseCell; class ScFormulaCell; class SvNumberFormatter; class ScDBRangeBase; struct MatrixDoubleOp; struct ScQueryParam; struct ScDBQueryParamBase; struct ScCompare { double nVal[2]; String* pVal[2]; sal_Bool bVal[2]; sal_Bool bEmpty[2]; ScCompare( String* p1, String* p2 ) { pVal[ 0 ] = p1; pVal[ 1 ] = p2; bEmpty[0] = sal_False; bEmpty[1] = sal_False; } }; struct ScCompareOptions { ScQueryEntry aQueryEntry; bool bRegEx; bool bMatchWholeCell; bool bIgnoreCase; ScCompareOptions( ScDocument* pDoc, const ScQueryEntry& rEntry, bool bReg ); private: // Not implemented, prevent usage. ScCompareOptions(); ScCompareOptions( const ScCompareOptions & ); ScCompareOptions& operator=( const ScCompareOptions & ); }; class ScToken; #define MAXSTACK (4096 / sizeof(formula::FormulaToken*)) class ScTokenStack { public: DECL_FIXEDMEMPOOL_NEWDEL( ScTokenStack ) formula::FormulaToken* pPointer[ MAXSTACK ]; }; enum ScIterFunc { ifSUM, // Sum ifSUMSQ, // Sum squares ifPRODUCT, // Product ifAVERAGE, // Average ifCOUNT, // Count ifCOUNT2, // Count non-empty ifMIN, // Minimum ifMAX // Maximum }; enum ScIterFuncIf { ifSUMIF, // Conditional sum ifAVERAGEIF // Conditional average }; struct FormulaTokenRef_less { bool operator () ( const formula::FormulaConstTokenRef& r1, const formula::FormulaConstTokenRef& r2 ) const { return &r1 < &r2; } }; typedef ::std::map< const formula::FormulaConstTokenRef, formula::FormulaTokenRef, FormulaTokenRef_less> ScTokenMatrixMap; class ScInterpreter { // distibution function objects need the GetxxxDist methods friend class ScGammaDistFunction; friend class ScBetaDistFunction; friend class ScTDistFunction; friend class ScFDistFunction; friend class ScChiDistFunction; friend class ScChiSqDistFunction; public: DECL_FIXEDMEMPOOL_NEWDEL( ScInterpreter ) static void GlobalExit(); // aus ScGlobal::Clear() gerufen /// Could string be a regular expression? /// If pDoc!=NULL the document options are taken into account and if /// RegularExpressions are disabled the function returns sal_False regardless /// of the string content. static sal_Bool MayBeRegExp( const String& rStr, const ScDocument* pDoc ); /// Fail safe division, returning an errDivisionByZero coded into a double /// if denominator is 0.0 static inline double div( const double& fNumerator, const double& fDenominator ); ScMatrixRef GetNewMat(SCSIZE nC, SCSIZE nR); private: static ScTokenStack* pGlobalStack; static sal_Bool bGlobalStackInUse; formula::FormulaTokenIterator aCode; ScAddress aPos; ScTokenArray& rArr; ScDocument* pDok; formula::FormulaTokenRef xResult; ScJumpMatrix* pJumpMatrix; // currently active array condition, if any ScTokenMatrixMap* pTokenMatrixMap; // map ScToken* to formula::FormulaTokenRef if in array condition ScFormulaCell* pMyFormulaCell; // the cell of this formula expression SvNumberFormatter* pFormatter; const formula::FormulaToken* pCur; // current token String aTempStr; // for GetString() ScTokenStack* pStackObj; // contains the stacks formula::FormulaToken** pStack; // the current stack sal_uInt16 nGlobalError; // global (local to this formula expression) error sal_uInt16 sp; // stack pointer sal_uInt16 maxsp; // the maximal used stack pointer sal_uLong nFuncFmtIndex; // NumberFormatIndex of a function sal_uLong nCurFmtIndex; // current NumberFormatIndex sal_uLong nRetFmtIndex; // NumberFormatIndex of an expression, if any short nFuncFmtType; // NumberFormatType of a function short nCurFmtType; // current NumberFormatType short nRetFmtType; // NumberFormatType of an expression sal_uInt16 mnStringNoValueError; // the error set in ConvertStringToValue() if no value sal_Bool glSubTotal; // flag for subtotal functions sal_uInt8 cPar; // current count of parameters sal_Bool bCalcAsShown; // precision as shown sal_Bool bMatrixFormula; // formula cell is a matrix formula //---------------------------------Funktionen in interpre.cxx--------- // nMust <= nAct <= nMax ? ok : PushError inline sal_Bool MustHaveParamCount( short nAct, short nMust ); inline sal_Bool MustHaveParamCount( short nAct, short nMust, short nMax ); inline sal_Bool MustHaveParamCountMin( short nAct, short nMin ); void PushParameterExpected(); void PushIllegalParameter(); void PushIllegalArgument(); void PushNoValue(); void PushNA(); //------------------------------------------------------------------------- // Funktionen fuer den Zugriff auf das Document //------------------------------------------------------------------------- void ReplaceCell( ScAddress& ); // for TableOp void ReplaceCell( SCCOL& rCol, SCROW& rRow, SCTAB& rTab ); // for TableOp sal_Bool IsTableOpInRange( const ScRange& ); sal_uLong GetCellNumberFormat( const ScAddress&, const ScBaseCell* ); double ConvertStringToValue( const String& ); double GetCellValue( const ScAddress&, const ScBaseCell* ); double GetCellValueOrZero( const ScAddress&, const ScBaseCell* ); double GetValueCellValue( const ScAddress&, const ScValueCell* ); ScBaseCell* GetCell( const ScAddress& rPos ) { return pDok->GetCell( rPos ); } void GetCellString( String& rStr, const ScBaseCell* pCell ); inline sal_uInt16 GetCellErrCode( const ScBaseCell* pCell ) { return pCell ? pCell->GetErrorCode() : 0; } inline CellType GetCellType( const ScBaseCell* pCell ) { return pCell ? pCell->GetCellType() : CELLTYPE_NONE; } /// Really empty or inherited emptiness. inline sal_Bool HasCellEmptyData( const ScBaseCell* pCell ) { return pCell ? pCell->HasEmptyData() : sal_True; } /// This includes inherited emptiness, which usually is regarded as value! inline sal_Bool HasCellValueData( const ScBaseCell* pCell ) { return pCell ? pCell->HasValueData() : sal_False; } /// Not empty and not value. inline sal_Bool HasCellStringData( const ScBaseCell* pCell ) { return pCell ? pCell->HasStringData() : sal_False; } sal_Bool CreateDoubleArr(SCCOL nCol1, SCROW nRow1, SCTAB nTab1, SCCOL nCol2, SCROW nRow2, SCTAB nTab2, sal_uInt8* pCellArr); sal_Bool CreateStringArr(SCCOL nCol1, SCROW nRow1, SCTAB nTab1, SCCOL nCol2, SCROW nRow2, SCTAB nTab2, sal_uInt8* pCellArr); sal_Bool CreateCellArr(SCCOL nCol1, SCROW nRow1, SCTAB nTab1, SCCOL nCol2, SCROW nRow2, SCTAB nTab2, sal_uInt8* pCellArr); //----------------------------------------------------------------------------- // Stack operations //----------------------------------------------------------------------------- /** Does substitute with formula::FormulaErrorToken in case nGlobalError is set and the token passed is not formula::FormulaErrorToken. Increments RefCount of the original token if not substituted. */ void Push( formula::FormulaToken& r ); /** Does not substitute with formula::FormulaErrorToken in case nGlobalError is set. Used to push RPN tokens or from within Push() or tokens that are already explicit formula::FormulaErrorToken. Increments RefCount. */ void PushWithoutError( formula::FormulaToken& r ); /** Clones the token to be pushed or substitutes with formula::FormulaErrorToken if nGlobalError is set and the token passed is not formula::FormulaErrorToken. */ void PushTempToken( const formula::FormulaToken& ); /** Does substitute with formula::FormulaErrorToken in case nGlobalError is set and the token passed is not formula::FormulaErrorToken. Increments RefCount of the original token if not substituted. ATTENTION! The token had to be allocated with `new' and must not be used after this call if no RefCount was set because possibly it gets immediately deleted in case of an errStackOverflow or if substituted with formula::FormulaErrorToken! */ void PushTempToken( formula::FormulaToken* ); /** Does not substitute with formula::FormulaErrorToken in case nGlobalError is set. Used to push tokens from within PushTempToken() or tokens that are already explicit formula::FormulaErrorToken. Increments RefCount. ATTENTION! The token had to be allocated with `new' and must not be used after this call if no RefCount was set because possibly it gets immediately decremented again and thus deleted in case of an errStackOverflow! */ void PushTempTokenWithoutError( formula::FormulaToken* ); /** If nGlobalError is set push formula::FormulaErrorToken. If nGlobalError is not set do nothing. Used in PushTempToken() and alike to simplify handling. @return: if nGlobalError. */ inline bool IfErrorPushError() { if (nGlobalError) { PushTempTokenWithoutError( new formula::FormulaErrorToken( nGlobalError)); return true; } return false; } /** Obtain cell result / content from address and push as temp token. bDisplayEmptyAsString is passed to ScEmptyCell in case of an empty cell result. Also obtain number format and type if _both_, type and index pointer, are not NULL. */ void PushCellResultToken( bool bDisplayEmptyAsString, const ScAddress & rAddress, short * pRetTypeExpr, sal_uLong * pRetIndexExpr ); formula::FormulaTokenRef PopToken(); void Pop(); void PopError(); double PopDouble(); const String& PopString(); void ValidateRef( const ScSingleRefData & rRef ); void ValidateRef( const ScComplexRefData & rRef ); void ValidateRef( const ScRefList & rRefList ); void SingleRefToVars( const ScSingleRefData & rRef, SCCOL & rCol, SCROW & rRow, SCTAB & rTab ); void PopSingleRef( ScAddress& ); void PopSingleRef(SCCOL& rCol, SCROW &rRow, SCTAB& rTab); void DoubleRefToRange( const ScComplexRefData&, ScRange&, sal_Bool bDontCheckForTableOp = sal_False ); /** If formula::StackVar formula::svDoubleRef pop ScDoubleRefToken and return values of ScComplexRefData. Else if StackVar svRefList return values of the ScComplexRefData where rRefInList is pointing to. rRefInList is incremented. If rRefInList was the last element in list pop ScRefListToken and set rRefInList to 0, else rParam is incremented (!) to allow usage as in while(nParamCount--) PopDoubleRef(aRange,nParamCount,nRefInList); */ void PopDoubleRef( ScRange & rRange, short & rParam, size_t & rRefInList ); void PopDoubleRef( ScRange&, sal_Bool bDontCheckForTableOp = sal_False ); void DoubleRefToVars( const ScToken* p, SCCOL& rCol1, SCROW &rRow1, SCTAB& rTab1, SCCOL& rCol2, SCROW &rRow2, SCTAB& rTab2, sal_Bool bDontCheckForTableOp = sal_False ); ScDBRangeBase* PopDoubleRef(); void PopDoubleRef(SCCOL& rCol1, SCROW &rRow1, SCTAB& rTab1, SCCOL& rCol2, SCROW &rRow2, SCTAB& rTab2, sal_Bool bDontCheckForTableOp = sal_False ); sal_Bool PopDoubleRefOrSingleRef( ScAddress& rAdr ); void PopDoubleRefPushMatrix(); // If MatrixFormula: convert formula::svDoubleRef to svMatrix, create JumpMatrix. // Else convert area reference parameters marked as ForceArray to array. // Returns sal_True if JumpMatrix created. bool ConvertMatrixParameters(); inline void MatrixDoubleRefToMatrix(); // if MatrixFormula: PopDoubleRefPushMatrix // If MatrixFormula or ForceArray: ConvertMatrixParameters() inline bool MatrixParameterConversion(); ScMatrixRef PopMatrix(); //void PushByte(sal_uInt8 nVal); void PushDouble(double nVal); void PushInt( int nVal ); void PushStringBuffer( const sal_Unicode* pString ); void PushString( const String& rString ); void PushSingleRef(SCCOL nCol, SCROW nRow, SCTAB nTab); void PushDoubleRef(SCCOL nCol1, SCROW nRow1, SCTAB nTab1, SCCOL nCol2, SCROW nRow2, SCTAB nTab2); void PushMatrix(ScMatrix* pMat); void PushError( sal_uInt16 nError ); /// Raw stack type without default replacements. formula::StackVar GetRawStackType(); /// Stack type with replacement of defaults, e.g. svMissing and formula::svEmptyCell will result in formula::svDouble. formula::StackVar GetStackType(); // peek StackType of Parameter, Parameter 1 == TOS, 2 == TOS-1, ... formula::StackVar GetStackType( sal_uInt8 nParam ); sal_uInt8 GetByte() { return cPar; } // generiert aus DoubleRef positionsabhaengige SingleRef sal_Bool DoubleRefToPosSingleRef( const ScRange& rRange, ScAddress& rAdr ); double GetDouble(); double GetDoubleWithDefault(double nDefault); sal_Bool IsMissing(); sal_Bool GetBool() { return GetDouble() != 0.0; } const String& GetString(); // pop matrix and obtain one element, upper left or according to jump matrix ScMatValType GetDoubleOrStringFromMatrix( double& rDouble, String& rString ); ScMatrixRef CreateMatrixFromDoubleRef( const formula::FormulaToken* pToken, SCCOL nCol1, SCROW nRow1, SCTAB nTab1, SCCOL nCol2, SCROW nRow2, SCTAB nTab2 ); inline ScTokenMatrixMap& GetTokenMatrixMap(); ScTokenMatrixMap* CreateTokenMatrixMap(); ScMatrixRef GetMatrix(); void ScTableOp(); // Mehrfachoperationen void ScErrCell(); // Sonderbehandlung // Fehlerzelle //-----------------------------allgemeine Hilfsfunktionen void SetMaxIterationCount(sal_uInt16 n); inline void CurFmtToFuncFmt() { nFuncFmtType = nCurFmtType; nFuncFmtIndex = nCurFmtIndex; } // Check for String overflow of rResult+rAdd and set error and erase rResult // if so. Return sal_True if ok, sal_False if overflow inline sal_Bool CheckStringResultLen( String& rResult, const String& rAdd ); // Set error according to rVal, and set rVal to 0.0 if there was an error. inline void TreatDoubleError( double& rVal ); // Lookup using ScLookupCache, @returns sal_True if found and result address bool LookupQueryWithCache( ScAddress & o_rResultPos, const ScQueryParam & rParam ) const; //---------------------------------Funktionen in interpr1.cxx--------- void ScIfJump(); void ScChoseJump(); // Be sure to only call this if pStack[sp-nStackLevel] really contains a // ScJumpMatrixToken, no further checks are applied! // Returns true if last jump was executed and result matrix pushed. bool JumpMatrix( short nStackLevel ); /** @param pOptions NULL means case sensitivity document option is to be used! */ double CompareFunc( const ScCompare& rComp, ScCompareOptions* pOptions = NULL ); double Compare(); /** @param pOptions NULL means case sensitivity document option is to be used! */ ScMatrixRef CompareMat( ScCompareOptions* pOptions = NULL ); ScMatrixRef QueryMat( ScMatrix* pMat, ScCompareOptions& rOptions ); void ScEqual(); void ScNotEqual(); void ScLess(); void ScGreater(); void ScLessEqual(); void ScGreaterEqual(); void ScAnd(); void ScOr(); void ScXor(); void ScNot(); void ScNeg(); void ScPercentSign(); void ScIntersect(); void ScRangeFunc(); void ScUnionFunc(); void ScPi(); void ScRandom(); void ScTrue(); void ScFalse(); void ScDeg(); void ScRad(); void ScSin(); void ScCos(); void ScTan(); void ScCot(); void ScArcSin(); void ScArcCos(); void ScArcTan(); void ScArcCot(); void ScSinHyp(); void ScCosHyp(); void ScTanHyp(); void ScCotHyp(); void ScArcSinHyp(); void ScArcCosHyp(); void ScArcTanHyp(); void ScArcCotHyp(); void ScCosecant(); void ScSecant(); void ScCosecantHyp(); void ScSecantHyp(); void ScExp(); void ScLn(); void ScLog10(); void ScSqrt(); void ScIsEmpty(); short IsString(); void ScIsString(); void ScIsNonString(); void ScIsLogical(); void ScType(); void ScCell(); void ScIsRef(); void ScIsValue(); void ScIsFormula(); void ScFormula(); void ScRoman(); void ScArabic(); void ScIsNV(); void ScIsErr(); void ScIsError(); short IsEven(); void ScIsEven(); void ScIsOdd(); void ScN(); void ScCode(); void ScTrim(); void ScUpper(); void ScPropper(); void ScLower(); void ScLen(); void ScT(); void ScValue(); void ScClean(); void ScChar(); void ScJis(); void ScAsc(); void ScUnicode(); void ScUnichar(); void ScMin( sal_Bool bTextAsZero = sal_False ); void ScMax( sal_Bool bTextAsZero = sal_False ); double IterateParameters( ScIterFunc, sal_Bool bTextAsZero = sal_False ); void ScSumSQ(); void ScSum(); void ScProduct(); void ScAverage( sal_Bool bTextAsZero = sal_False ); void ScCount(); void ScCount2(); void GetStVarParams( double& rVal, double& rValCount, sal_Bool bTextAsZero = sal_False ); void ScVar( sal_Bool bTextAsZero = sal_False ); void ScVarP( sal_Bool bTextAsZero = sal_False ); void ScStDev( sal_Bool bTextAsZero = sal_False ); void ScStDevP( sal_Bool bTextAsZero = sal_False ); void ScColumns(); void ScRows(); void ScTables(); void ScColumn(); void ScRow(); void ScTable(); void ScMatch(); double IterateParametersIf( ScIterFuncIf ); void ScCountIf(); void ScSumIf(); void ScAverageIf(); void ScCountEmptyCells(); void ScLookup(); void ScHLookup(); void ScVLookup(); void ScSubTotal(); // If upon call rMissingField==sal_True then the database field parameter may be // missing (Xcl DCOUNT() syntax), or may be faked as missing by having the // value 0.0 or being exactly the entire database range reference (old SO // compatibility). If this was the case then rMissingField is set to sal_True upon // return. If rMissingField==sal_False upon call all "missing cases" are considered // to be an error. ScDBQueryParamBase* GetDBParams( sal_Bool& rMissingField ); void DBIterator( ScIterFunc ); void ScDBSum(); void ScDBCount(); void ScDBCount2(); void ScDBAverage(); void ScDBGet(); void ScDBMax(); void ScDBMin(); void ScDBProduct(); void GetDBStVarParams( double& rVal, double& rValCount ); void ScDBStdDev(); void ScDBStdDevP(); void ScDBVar(); void ScDBVarP(); void ScIndirect(); void ScAddressFunc(); void ScOffset(); void ScIndex(); void ScMultiArea(); void ScAreas(); void ScCurrency(); void ScReplace(); void ScFixed(); void ScFind(); void ScExact(); void ScLeft(); void ScRight(); void ScSearch(); void ScMid(); void ScText(); void ScSubstitute(); void ScRept(); void ScConcat(); void ScExternal(); void ScMissing(); void ScMacro(); sal_Bool SetSbxVariable( SbxVariable* pVar, const ScAddress& ); sal_Bool SetSbxVariable( SbxVariable* pVar, SCCOL nCol, SCROW nRow, SCTAB nTab ); void ScErrorType(); void ScDBArea(); void ScColRowNameAuto(); void ScExternalRef(); void ScGetPivotData(); void ScHyperLink(); void ScBahtText(); void ScTTT(); //----------------Funktionen in interpr2.cxx--------------- /** Obtain the date serial number for a given date. @param bStrict If sal_False, nYear < 100 takes the two-digit year setting into account, and rollover of invalid calendar dates takes place, e.g. 1999-02-31 => 1999-03-03. If sal_True, the date passed must be a valid Gregorian calendar date. No two-digit expanding or rollover is done. */ double GetDateSerial( sal_Int16 nYear, sal_Int16 nMonth, sal_Int16 nDay, bool bStrict ); void ScGetActDate(); void ScGetActTime(); void ScGetYear(); void ScGetMonth(); void ScGetDay(); void ScGetDayOfWeek(); void ScGetWeekOfYear(); void ScEasterSunday(); void ScGetHour(); void ScGetMin(); void ScGetSec(); void ScPlusMinus(); void ScAbs(); void ScInt(); void ScEven(); void ScOdd(); void ScCeil(); void ScFloor(); void RoundNumber( rtl_math_RoundingMode eMode ); void ScRound(); void ScRoundUp(); void ScRoundDown(); void ScGetDateValue(); void ScGetTimeValue(); void ScArcTan2(); void ScLog(); void ScGetDate(); void ScGetTime(); void ScGetDiffDate(); void ScGetDiffDate360(); void ScPower(); void ScAmpersand(); void ScAdd(); void ScSub(); void ScMul(); void ScDiv(); void ScPow(); void ScCurrent(); void ScStyle(); void ScDde(); void ScBase(); void ScDecimal(); void ScConvert(); void ScEuroConvert(); //----------------------- Finanzfunktionen ------------------------------------ void ScNPV(); void ScIRR(); void ScMIRR(); void ScISPMT(); double ScGetBw(double fZins, double fZzr, double fRmz, double fZw, double fF); void ScBW(); void ScDIA(); double ScGetGDA(double fWert, double fRest, double fDauer, double fPeriode, double fFaktor); void ScGDA(); void ScGDA2(); double ScInterVDB(double fWert,double fRest,double fDauer,double fDauer1, double fPeriode,double fFaktor); void ScVDB(); void ScLaufz(); void ScLIA(); double ScGetRmz(double fZins, double fZzr, double fBw, double fZw, double fF); void ScRMZ(); void ScZGZ(); double ScGetZw(double fZins, double fZzr, double fRmz, double fBw, double fF); void ScZW(); void ScZZR(); bool RateIteration(double fNper, double fPayment, double fPv, double fFv, double fPayType, double& fGuess); void ScZins(); double ScGetZinsZ(double fZins, double fZr, double fZzr, double fBw, double fZw, double fF, double& fRmz); void ScZinsZ(); void ScKapz(); void ScKumZinsZ(); void ScKumKapZ(); void ScEffektiv(); void ScNominal(); void ScMod(); void ScBackSolver(); void ScIntercept(); //-------------------------Funktionen in interpr5.cxx-------------------------- double ScGetGCD(double fx, double fy); void ScGCD(); void ScLCM(); //-------------------------- Matrixfunktionen --------------------------------- void ScMatValue(); void MEMat(ScMatrix* mM, SCSIZE n); void ScMatDet(); void ScMatInv(); void ScMatMult(); void ScMatTrans(); void ScEMat(); void ScMatRef(); ScMatrixRef MatConcat(ScMatrix* pMat1, ScMatrix* pMat2); void ScSumProduct(); void ScSumX2MY2(); void ScSumX2DY2(); void ScSumXMY2(); void ScGrowth(); bool CalculateSkew(double& fSum,double& fCount,double& vSum,std::vector& values); void CalculateSlopeIntercept(sal_Bool bSlope); void CalculateSmallLarge(sal_Bool bSmall); void CalculatePearsonCovar(sal_Bool _bPearson,sal_Bool _bStexy); bool CalculateTest( sal_Bool _bTemplin ,const SCSIZE nC1, const SCSIZE nC2,const SCSIZE nR1,const SCSIZE nR2 ,const ScMatrixRef& pMat1,const ScMatrixRef& pMat2 ,double& fT,double& fF); void CalculateLookup(sal_Bool HLookup); bool FillEntry(ScQueryEntry& rEntry); void CalculateAddSub(sal_Bool _bSub); void CalculateTrendGrowth(bool _bGrowth); void CalulateRGPRKP(bool _bRKP); void CalculateSumX2MY2SumX2DY2(sal_Bool _bSumX2DY2); void CalculateMatrixValue(const ScMatrix* pMat,SCSIZE nC,SCSIZE nR); bool CheckMatrix(bool _bLOG,sal_uInt8& nCase,SCSIZE& nCX,SCSIZE& nCY,SCSIZE& nRX,SCSIZE& nRY,SCSIZE& M,SCSIZE& N,ScMatrixRef& pMatX,ScMatrixRef& pMatY); void ScRGP(); void ScRKP(); void ScForecast(); //------------------------- Functions in interpr3.cxx ------------------------- void ScNoName(); void ScBadName(); // Statistik: double phi(double x); double integralPhi(double x); double taylor(double* pPolynom, sal_uInt16 nMax, double x); double gauss(double x); double gaussinv(double x); double GetBetaDist(double x, double alpha, double beta); //cumulative distribution function double GetBetaDistPDF(double fX, double fA, double fB); //probability density function) double GetChiDist(double fChi, double fDF); // for LEGACY.CHIDIST, returns right tail double GetChiSqDistCDF(double fX, double fDF); // for CHISQDIST, returns left tail double GetChiSqDistPDF(double fX, double fDF); // probability density function double GetFDist(double x, double fF1, double fF2); double GetTDist(double T, double fDF); double Fakultaet(double x); double BinomKoeff(double n, double k); double GetGamma(double x); double GetLogGamma(double x); double GetBeta(double fAlpha, double fBeta); double GetLogBeta(double fAlpha, double fBeta); double GetBinomDistPMF(double x, double n, double p); //probability mass function void ScLogGamma(); void ScGamma(); void ScPhi(); void ScGauss(); void ScStdNormDist(); void ScFisher(); void ScFisherInv(); void ScFact(); void ScNormDist(); void ScGammaDist(); void ScGammaInv(); void ScExpDist(); void ScBinomDist(); void ScPoissonDist(); void ScKombin(); void ScKombin2(); void ScVariationen(); void ScVariationen2(); void ScB(); void ScHypGeomDist(); void ScLogNormDist(); void ScLogNormInv(); void ScTDist(); void ScFDist(); void ScChiDist(); // for LEGACY.CHIDIST, returns right tail void ScChiSqDist(); // returns left tail or density void ScChiSqInv(); //invers to CHISQDIST void ScWeibull(); void ScBetaDist(); void ScFInv(); void ScTInv(); void ScChiInv(); void ScBetaInv(); void ScCritBinom(); void ScNegBinomDist(); void ScKurt(); void ScHarMean(); void ScGeoMean(); void ScStandard(); void ScSkew(); void ScMedian(); double GetMedian( ::std::vector & rArray ); double GetPercentile( ::std::vector & rArray, double fPercentile ); void GetNumberSequenceArray( sal_uInt8 nParamCount, ::std::vector& rArray ); void GetSortArray(sal_uInt8 nParamCount, ::std::vector& rSortArray, ::std::vector* pIndexOrder = NULL); void QuickSort(::std::vector& rSortArray, ::std::vector* pIndexOrder = NULL); void ScModalValue(); void ScAveDev(); void ScDevSq(); void ScZTest(); void ScTTest(); void ScFTest(); void ScChiTest(); void ScRank(); void ScPercentile(); void ScPercentrank(); void ScLarge(); void ScSmall(); void ScFrequency(); void ScQuartile(); void ScNormInv(); void ScSNormInv(); void ScConfidence(); void ScTrimMean(); void ScProbability(); void ScCorrel(); void ScCovar(); void ScPearson(); void ScRSQ(); void ScSTEXY(); void ScSlope(); void ScTrend(); void ScInfo(); //------------------------ Functions in interpr6.cxx ------------------------- static const double fMaxGammaArgument; // defined in interpr3.cxx double GetGammaContFraction(double fA,double fX); double GetGammaSeries(double fA,double fX); double GetLowRegIGamma(double fA,double fX); // lower regularized incomplete gamma function, GAMMAQ double GetUpRegIGamma(double fA,double fX); // upper regularized incomplete gamma function, GAMMAP // probability density function; fLambda is "scale" parameter double GetGammaDistPDF(double fX, double fAlpha, double fLambda); // cumulative distribution function; fLambda is "scale" parameter double GetGammaDist(double fX, double fAlpha, double fLambda); //---------------------------------------------------------------------------- public: ScInterpreter( ScFormulaCell* pCell, ScDocument* pDoc, const ScAddress&, ScTokenArray& ); ~ScInterpreter(); formula::StackVar Interpret(); void SetError(sal_uInt16 nError) { if (nError && !nGlobalError) nGlobalError = nError; } sal_uInt16 GetError() const { return nGlobalError; } formula::StackVar GetResultType() const { return xResult->GetType(); } const String& GetStringResult() const { return xResult->GetString(); } double GetNumResult() const { return xResult->GetDouble(); } formula::FormulaTokenRef GetResultToken() const { return xResult; } short GetRetFormatType() const { return nRetFmtType; } sal_uLong GetRetFormatIndex() const { return nRetFmtIndex; } }; inline void ScInterpreter::MatrixDoubleRefToMatrix() { if ( bMatrixFormula && GetStackType() == formula::svDoubleRef ) { GetTokenMatrixMap(); // make sure it exists, create if not. PopDoubleRefPushMatrix(); } } inline bool ScInterpreter::MatrixParameterConversion() { if ( (bMatrixFormula || pCur->HasForceArray()) && !pJumpMatrix && sp > 0 ) return ConvertMatrixParameters(); return false; } inline ScTokenMatrixMap& ScInterpreter::GetTokenMatrixMap() { if (!pTokenMatrixMap) pTokenMatrixMap = CreateTokenMatrixMap(); return *pTokenMatrixMap; } inline sal_Bool ScInterpreter::MustHaveParamCount( short nAct, short nMust ) { if ( nAct == nMust ) return sal_True; if ( nAct < nMust ) PushParameterExpected(); else PushIllegalParameter(); return sal_False; } inline sal_Bool ScInterpreter::MustHaveParamCount( short nAct, short nMust, short nMax ) { if ( nMust <= nAct && nAct <= nMax ) return sal_True; if ( nAct < nMust ) PushParameterExpected(); else PushIllegalParameter(); return sal_False; } inline sal_Bool ScInterpreter::MustHaveParamCountMin( short nAct, short nMin ) { if ( nAct >= nMin ) return sal_True; PushParameterExpected(); return sal_False; } inline sal_Bool ScInterpreter::CheckStringResultLen( String& rResult, const String& rAdd ) { if ( (sal_uLong) rResult.Len() + rAdd.Len() > STRING_MAXLEN ) { SetError( errStringOverflow ); rResult.Erase(); return sal_False; } return sal_True; } inline void ScInterpreter::TreatDoubleError( double& rVal ) { if ( !::rtl::math::isFinite( rVal ) ) { sal_uInt16 nErr = GetDoubleErrorValue( rVal ); if ( nErr ) SetError( nErr ); else SetError( errNoValue ); rVal = 0.0; } } // static inline double ScInterpreter::div( const double& fNumerator, const double& fDenominator ) { return (fDenominator != 0.0) ? (fNumerator / fDenominator) : CreateDoubleError( errDivisionByZero); } #endif