/************************************************************** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * *************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_vcl.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pdfwriter_impl.hxx" // ----------- // - Defines - // ----------- #define MAX_TILE_WIDTH 1024 #define MAX_TILE_HEIGHT 1024 // --------- // - Types - // --------- typedef ::std::pair< MetaAction*, int > Component; // MetaAction plus index in metafile typedef ::std::list< Component > ComponentList; // List of (intersecting) actions, plus overall bounds struct ConnectedComponents { ConnectedComponents() : aComponentList(), aBounds(), aBgColor(COL_WHITE), bIsSpecial(false), bIsFullyTransparent(false) {} ComponentList aComponentList; Rectangle aBounds; Color aBgColor; bool bIsSpecial; bool bIsFullyTransparent; }; typedef ::std::list< ConnectedComponents > ConnectedComponentsList; // ----------- // - Printer - // ----------- /** #i10613# Extracted from Printer::GetPreparedMetaFile. Returns true if given action requires special handling (usually because of transparency) */ static bool ImplIsActionSpecial( const MetaAction& rAct ) { switch( rAct.GetType() ) { case META_TRANSPARENT_ACTION: return true; case META_FLOATTRANSPARENT_ACTION: return true; case META_BMPEX_ACTION: return static_cast(rAct).GetBitmapEx().IsTransparent(); case META_BMPEXSCALE_ACTION: return static_cast(rAct).GetBitmapEx().IsTransparent(); case META_BMPEXSCALEPART_ACTION: return static_cast(rAct).GetBitmapEx().IsTransparent(); default: return false; } } /** Check whether rCurrRect rectangle fully covers io_rPrevRect - if yes, return true and update o_rBgColor */ static bool checkRect( Rectangle& io_rPrevRect, Color& o_rBgColor, const Rectangle& rCurrRect, OutputDevice& rMapModeVDev ) { // shape needs to fully cover previous content, and have uniform // color const bool bRet( rMapModeVDev.LogicToPixel(rCurrRect).IsInside(io_rPrevRect) && rMapModeVDev.IsFillColor() ); if( bRet ) { io_rPrevRect = rCurrRect; o_rBgColor = rMapModeVDev.GetFillColor(); } return bRet; } /** #107169# Convert BitmapEx to Bitmap with appropriately blended color. Convert MetaTransparentAction to plain polygon, appropriately colored @param o_rMtf Add converted actions to this metafile */ static void ImplConvertTransparentAction( GDIMetaFile& o_rMtf, const MetaAction& rAct, const OutputDevice& rStateOutDev, Color aBgColor ) { if( rAct.GetType() == META_TRANSPARENT_ACTION ) { const MetaTransparentAction* pTransAct = static_cast(&rAct); sal_uInt16 nTransparency( pTransAct->GetTransparence() ); // #i10613# Respect transparency for draw color if( nTransparency ) { o_rMtf.AddAction( new MetaPushAction( PUSH_LINECOLOR|PUSH_FILLCOLOR ) ); // assume white background for alpha blending Color aLineColor( rStateOutDev.GetLineColor() ); aLineColor.SetRed( static_cast( (255L*nTransparency + (100L - nTransparency)*aLineColor.GetRed()) / 100L ) ); aLineColor.SetGreen( static_cast( (255L*nTransparency + (100L - nTransparency)*aLineColor.GetGreen()) / 100L ) ); aLineColor.SetBlue( static_cast( (255L*nTransparency + (100L - nTransparency)*aLineColor.GetBlue()) / 100L ) ); o_rMtf.AddAction( new MetaLineColorAction(aLineColor, sal_True) ); Color aFillColor( rStateOutDev.GetFillColor() ); aFillColor.SetRed( static_cast( (255L*nTransparency + (100L - nTransparency)*aFillColor.GetRed()) / 100L ) ); aFillColor.SetGreen( static_cast( (255L*nTransparency + (100L - nTransparency)*aFillColor.GetGreen()) / 100L ) ); aFillColor.SetBlue( static_cast( (255L*nTransparency + (100L - nTransparency)*aFillColor.GetBlue()) / 100L ) ); o_rMtf.AddAction( new MetaFillColorAction(aFillColor, sal_True) ); } o_rMtf.AddAction( new MetaPolyPolygonAction(pTransAct->GetPolyPolygon()) ); if( nTransparency ) o_rMtf.AddAction( new MetaPopAction() ); } else { BitmapEx aBmpEx; switch( rAct.GetType() ) { case META_BMPEX_ACTION: aBmpEx = static_cast(rAct).GetBitmapEx(); break; case META_BMPEXSCALE_ACTION: aBmpEx = static_cast(rAct).GetBitmapEx(); break; case META_BMPEXSCALEPART_ACTION: aBmpEx = static_cast(rAct).GetBitmapEx(); break; case META_TRANSPARENT_ACTION: default: DBG_ERROR("Printer::GetPreparedMetafile impossible state reached"); break; } Bitmap aBmp( aBmpEx.GetBitmap() ); if( !aBmpEx.IsAlpha() ) { // blend with mask BitmapReadAccess* pRA = aBmp.AcquireReadAccess(); if( !pRA ) return; // what else should I do? Color aActualColor( aBgColor ); if( pRA->HasPalette() ) aActualColor = pRA->GetBestPaletteColor( aBgColor ).operator Color(); aBmp.ReleaseAccess(pRA); // did we get true white? if( aActualColor.GetColorError( aBgColor ) ) { // no, create truecolor bitmap, then aBmp.Convert( BMP_CONVERSION_24BIT ); // fill masked out areas white aBmp.Replace( aBmpEx.GetMask(), aBgColor ); } else { // fill masked out areas white aBmp.Replace( aBmpEx.GetMask(), aActualColor ); } } else { // blend with alpha channel aBmp.Convert( BMP_CONVERSION_24BIT ); aBmp.Blend(aBmpEx.GetAlpha(),aBgColor); } // add corresponding action switch( rAct.GetType() ) { case META_BMPEX_ACTION: o_rMtf.AddAction( new MetaBmpAction( static_cast(rAct).GetPoint(), aBmp )); break; case META_BMPEXSCALE_ACTION: o_rMtf.AddAction( new MetaBmpScaleAction( static_cast(rAct).GetPoint(), static_cast(rAct).GetSize(), aBmp )); break; case META_BMPEXSCALEPART_ACTION: o_rMtf.AddAction( new MetaBmpScalePartAction( static_cast(rAct).GetDestPoint(), static_cast(rAct).GetDestSize(), static_cast(rAct).GetSrcPoint(), static_cast(rAct).GetSrcSize(), aBmp )); break; default: DBG_ERROR("Unexpected case"); break; } } } // #i10613# Extracted from ImplCheckRect::ImplCreate // Returns true, if given action creates visible (i.e. non-transparent) output static bool ImplIsNotTransparent( const MetaAction& rAct, const OutputDevice& rOut ) { const bool bLineTransparency( rOut.IsLineColor() ? rOut.GetLineColor().GetTransparency() == 255 : true ); const bool bFillTransparency( rOut.IsFillColor() ? rOut.GetFillColor().GetTransparency() == 255 : true ); bool bRet( false ); switch( rAct.GetType() ) { case META_POINT_ACTION: if( !bLineTransparency ) bRet = true; break; case META_LINE_ACTION: if( !bLineTransparency ) bRet = true; break; case META_RECT_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_ROUNDRECT_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_ELLIPSE_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_ARC_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_PIE_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_CHORD_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_POLYLINE_ACTION: if( !bLineTransparency ) bRet = true; break; case META_POLYGON_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_POLYPOLYGON_ACTION: if( !bLineTransparency || !bFillTransparency ) bRet = true; break; case META_TEXT_ACTION: { const MetaTextAction& rTextAct = static_cast(rAct); const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() ); if( aString.Len() ) bRet = true; } break; case META_TEXTARRAY_ACTION: { const MetaTextArrayAction& rTextAct = static_cast(rAct); const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() ); if( aString.Len() ) bRet = true; } break; case META_PIXEL_ACTION: case META_BMP_ACTION: case META_BMPSCALE_ACTION: case META_BMPSCALEPART_ACTION: case META_BMPEX_ACTION: case META_BMPEXSCALE_ACTION: case META_BMPEXSCALEPART_ACTION: case META_MASK_ACTION: case META_MASKSCALE_ACTION: case META_MASKSCALEPART_ACTION: case META_GRADIENT_ACTION: case META_GRADIENTEX_ACTION: case META_HATCH_ACTION: case META_WALLPAPER_ACTION: case META_TRANSPARENT_ACTION: case META_FLOATTRANSPARENT_ACTION: case META_EPS_ACTION: case META_TEXTRECT_ACTION: case META_STRETCHTEXT_ACTION: case META_TEXTLINE_ACTION: // all other actions: generate non-transparent output bRet = true; break; default: break; } return bRet; } // #i10613# Extracted from ImplCheckRect::ImplCreate static Rectangle ImplCalcActionBounds( const MetaAction& rAct, const OutputDevice& rOut ) { Rectangle aActionBounds; switch( rAct.GetType() ) { case META_PIXEL_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), Size( 1, 1 ) ); break; case META_POINT_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), Size( 1, 1 ) ); break; case META_LINE_ACTION: { const MetaLineAction& rMetaLineAction = static_cast(rAct); aActionBounds = Rectangle( rMetaLineAction.GetStartPoint(), rMetaLineAction.GetEndPoint() ); aActionBounds.Justify(); const long nLineWidth(rMetaLineAction.GetLineInfo().GetWidth()); if(nLineWidth) { const long nHalfLineWidth((nLineWidth + 1) / 2); aActionBounds.Left() -= nHalfLineWidth; aActionBounds.Top() -= nHalfLineWidth; aActionBounds.Right() += nHalfLineWidth; aActionBounds.Bottom() += nHalfLineWidth; } break; } case META_RECT_ACTION: aActionBounds = static_cast(rAct).GetRect(); break; case META_ROUNDRECT_ACTION: aActionBounds = Polygon( static_cast(rAct).GetRect(), static_cast(rAct).GetHorzRound(), static_cast(rAct).GetVertRound() ).GetBoundRect(); break; case META_ELLIPSE_ACTION: { const Rectangle& rRect = static_cast(rAct).GetRect(); aActionBounds = Polygon( rRect.Center(), rRect.GetWidth() >> 1, rRect.GetHeight() >> 1 ).GetBoundRect(); break; } case META_ARC_ACTION: aActionBounds = Polygon( static_cast(rAct).GetRect(), static_cast(rAct).GetStartPoint(), static_cast(rAct).GetEndPoint(), POLY_ARC ).GetBoundRect(); break; case META_PIE_ACTION: aActionBounds = Polygon( static_cast(rAct).GetRect(), static_cast(rAct).GetStartPoint(), static_cast(rAct).GetEndPoint(), POLY_PIE ).GetBoundRect(); break; case META_CHORD_ACTION: aActionBounds = Polygon( static_cast(rAct).GetRect(), static_cast(rAct).GetStartPoint(), static_cast(rAct).GetEndPoint(), POLY_CHORD ).GetBoundRect(); break; case META_POLYLINE_ACTION: { const MetaPolyLineAction& rMetaPolyLineAction = static_cast(rAct); aActionBounds = rMetaPolyLineAction.GetPolygon().GetBoundRect(); const long nLineWidth(rMetaPolyLineAction.GetLineInfo().GetWidth()); if(nLineWidth) { const long nHalfLineWidth((nLineWidth + 1) / 2); aActionBounds.Left() -= nHalfLineWidth; aActionBounds.Top() -= nHalfLineWidth; aActionBounds.Right() += nHalfLineWidth; aActionBounds.Bottom() += nHalfLineWidth; } break; } case META_POLYGON_ACTION: aActionBounds = static_cast(rAct).GetPolygon().GetBoundRect(); break; case META_POLYPOLYGON_ACTION: aActionBounds = static_cast(rAct).GetPolyPolygon().GetBoundRect(); break; case META_BMP_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), rOut.PixelToLogic( static_cast(rAct).GetBitmap().GetSizePixel() ) ); break; case META_BMPSCALE_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), static_cast(rAct).GetSize() ); break; case META_BMPSCALEPART_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetDestPoint(), static_cast(rAct).GetDestSize() ); break; case META_BMPEX_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), rOut.PixelToLogic( static_cast(rAct).GetBitmapEx().GetSizePixel() ) ); break; case META_BMPEXSCALE_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), static_cast(rAct).GetSize() ); break; case META_BMPEXSCALEPART_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetDestPoint(), static_cast(rAct).GetDestSize() ); break; case META_MASK_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), rOut.PixelToLogic( static_cast(rAct).GetBitmap().GetSizePixel() ) ); break; case META_MASKSCALE_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), static_cast(rAct).GetSize() ); break; case META_MASKSCALEPART_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetDestPoint(), static_cast(rAct).GetDestSize() ); break; case META_GRADIENT_ACTION: aActionBounds = static_cast(rAct).GetRect(); break; case META_GRADIENTEX_ACTION: aActionBounds = static_cast(rAct).GetPolyPolygon().GetBoundRect(); break; case META_HATCH_ACTION: aActionBounds = static_cast(rAct).GetPolyPolygon().GetBoundRect(); break; case META_WALLPAPER_ACTION: aActionBounds = static_cast(rAct).GetRect(); break; case META_TRANSPARENT_ACTION: aActionBounds = static_cast(rAct).GetPolyPolygon().GetBoundRect(); break; case META_FLOATTRANSPARENT_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), static_cast(rAct).GetSize() ); break; case META_EPS_ACTION: aActionBounds = Rectangle( static_cast(rAct).GetPoint(), static_cast(rAct).GetSize() ); break; case META_TEXT_ACTION: { const MetaTextAction& rTextAct = static_cast(rAct); const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() ); if( aString.Len() ) { const Point aPtLog( rTextAct.GetPoint() ); // #105987# Use API method instead of Impl* methods // #107490# Set base parameter equal to index parameter rOut.GetTextBoundRect( aActionBounds, rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetIndex(), rTextAct.GetLen() ); aActionBounds.Move( aPtLog.X(), aPtLog.Y() ); } } break; case META_TEXTARRAY_ACTION: { const MetaTextArrayAction& rTextAct = static_cast(rAct); const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() ); const long nLen = aString.Len(); if( nLen ) { // #105987# ImplLayout takes everything in logical coordinates SalLayout* pSalLayout = rOut.ImplLayout( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen(), rTextAct.GetPoint(), 0, rTextAct.GetDXArray() ); if( pSalLayout ) { Rectangle aBoundRect( const_cast(rOut).ImplGetTextBoundRect( *pSalLayout ) ); aActionBounds = rOut.PixelToLogic( aBoundRect ); pSalLayout->Release(); } } } break; case META_TEXTRECT_ACTION: aActionBounds = static_cast(rAct).GetRect(); break; case META_STRETCHTEXT_ACTION: { const MetaStretchTextAction& rTextAct = static_cast(rAct); const XubString aString( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen() ); const long nLen = aString.Len(); // #i16195# Literate copy from TextArray action, the // semantics for the ImplLayout call are copied from the // OutDev::DrawStretchText() code. Unfortunately, also in // this case, public outdev methods such as GetTextWidth() // don't provide enough info. if( nLen ) { // #105987# ImplLayout takes everything in logical coordinates SalLayout* pSalLayout = rOut.ImplLayout( rTextAct.GetText(), rTextAct.GetIndex(), rTextAct.GetLen(), rTextAct.GetPoint(), rTextAct.GetWidth() ); if( pSalLayout ) { Rectangle aBoundRect( const_cast(rOut).ImplGetTextBoundRect( *pSalLayout ) ); aActionBounds = rOut.PixelToLogic( aBoundRect ); pSalLayout->Release(); } } } break; case META_TEXTLINE_ACTION: DBG_ERROR("META_TEXTLINE_ACTION not supported"); break; default: break; } if( !aActionBounds.IsEmpty() ) return rOut.LogicToPixel( aActionBounds ); else return Rectangle(); } static bool ImplIsActionHandlingTransparency( const MetaAction& rAct ) { // META_FLOATTRANSPARENT_ACTION can contain a whole metafile, // which is to be rendered with the given transparent gradient. We // currently cannot emulate transparent painting on a white // background reliably. // the remainder can handle printing itself correctly on a uniform // white background. switch( rAct.GetType() ) { case META_TRANSPARENT_ACTION: case META_BMPEX_ACTION: case META_BMPEXSCALE_ACTION: case META_BMPEXSCALEPART_ACTION: return true; default: return false; } } // remove comment to enable highlighting of generated output bool OutputDevice::RemoveTransparenciesFromMetaFile( const GDIMetaFile& rInMtf, GDIMetaFile& rOutMtf, long nMaxBmpDPIX, long nMaxBmpDPIY, bool bReduceTransparency, bool bTransparencyAutoMode, bool bDownsampleBitmaps, const Color& rBackground ) { MetaAction* pCurrAct; bool bTransparent( false ); rOutMtf.Clear(); if( ! bReduceTransparency || bTransparencyAutoMode ) { // watch for transparent drawing actions for( pCurrAct = ( (GDIMetaFile&) rInMtf ).FirstAction(); pCurrAct && !bTransparent; pCurrAct = ( (GDIMetaFile&) rInMtf ).NextAction() ) { // #i10613# Extracted "specialness" predicate into extra method // #107169# Also examine metafiles with masked bitmaps in // detail. Further down, this is optimized in such a way // that there's no unnecessary painting of masked bitmaps // (which are _always_ subdivided into rectangular regions // of uniform opacity): if a masked bitmap is printed over // empty background, we convert to a plain bitmap with // white background. if( ImplIsActionSpecial( *pCurrAct ) ) { bTransparent = true; } } } // #i10613# Determine set of connected components containing transparent objects. These are // then processed as bitmaps, the original actions are removed from the metafile. if( !bTransparent ) { // nothing transparent -> just copy rOutMtf = rInMtf; } else { // #i10613# // This works as follows: we want a number of distinct sets of // connected components, where each set contains metafile // actions that are intersecting (note: there are possibly // more actions contained as are directly intersecting, // because we can only produce rectangular bitmaps later // on. Thus, each set of connected components is the smallest // enclosing, axis-aligned rectangle that completely bounds a // number of intersecting metafile actions, plus any action // that would otherwise be cut in two). Therefore, we // iteratively add metafile actions from the original metafile // to this connected components list (aCCList), by checking // each element's bounding box against intersection with the // metaaction at hand. // All those intersecting elements are removed from aCCList // and collected in a temporary list (aCCMergeList). After all // elements have been checked, the aCCMergeList elements are // merged with the metaaction at hand into one resulting // connected component, with one big bounding box, and // inserted into aCCList again. // The time complexity of this algorithm is O(n^3), where n is // the number of metafile actions, and it finds all distinct // regions of rectangle-bounded connected components. This // algorithm was designed by AF. // // // STAGE 1: Detect background // ========================== // // Receives uniform background content, and is _not_ merged // nor checked for intersection against other aCCList elements ConnectedComponents aBackgroundComponent; // create an OutputDevice to record mapmode changes and the like VirtualDevice aMapModeVDev; aMapModeVDev.mnDPIX = mnDPIX; aMapModeVDev.mnDPIY = mnDPIY; aMapModeVDev.EnableOutput(sal_False); int nLastBgAction, nActionNum; // weed out page-filling background objects (if they are // uniformly coloured). Keeping them outside the other // connected components often prevents whole-page bitmap // generation. bool bStillBackground=true; // true until first non-bg action nActionNum=0; nLastBgAction=-1; pCurrAct=const_cast(rInMtf).FirstAction(); if( rBackground != Color( COL_TRANSPARENT ) ) { aBackgroundComponent.aBgColor = rBackground; if( meOutDevType == OUTDEV_PRINTER ) { Printer* pThis = dynamic_cast(this); Point aPageOffset = pThis->GetPageOffsetPixel(); aPageOffset = Point( 0, 0 ) - aPageOffset; Size aSize = pThis->GetPaperSizePixel(); aBackgroundComponent.aBounds = Rectangle( aPageOffset, aSize ); } else aBackgroundComponent.aBounds = Rectangle( Point( 0, 0 ), GetOutputSizePixel() ); } while( pCurrAct && bStillBackground ) { switch( pCurrAct->GetType() ) { case META_RECT_ACTION: { if( !checkRect( aBackgroundComponent.aBounds, aBackgroundComponent.aBgColor, static_cast(pCurrAct)->GetRect(), aMapModeVDev) ) bStillBackground=false; // incomplete occlusion of background else nLastBgAction=nActionNum; // this _is_ background break; } case META_POLYGON_ACTION: { const Polygon aPoly( static_cast(pCurrAct)->GetPolygon()); if( !basegfx::tools::isRectangle( aPoly.getB2DPolygon()) || !checkRect( aBackgroundComponent.aBounds, aBackgroundComponent.aBgColor, aPoly.GetBoundRect(), aMapModeVDev) ) bStillBackground=false; // incomplete occlusion of background else nLastBgAction=nActionNum; // this _is_ background break; } case META_POLYPOLYGON_ACTION: { const PolyPolygon aPoly( static_cast(pCurrAct)->GetPolyPolygon()); if( aPoly.Count() != 1 || !basegfx::tools::isRectangle( aPoly[0].getB2DPolygon()) || !checkRect( aBackgroundComponent.aBounds, aBackgroundComponent.aBgColor, aPoly.GetBoundRect(), aMapModeVDev) ) bStillBackground=false; // incomplete occlusion of background else nLastBgAction=nActionNum; // this _is_ background break; } case META_WALLPAPER_ACTION: { if( !checkRect( aBackgroundComponent.aBounds, aBackgroundComponent.aBgColor, static_cast(pCurrAct)->GetRect(), aMapModeVDev) ) bStillBackground=false; // incomplete occlusion of background else nLastBgAction=nActionNum; // this _is_ background break; } default: { if( ImplIsNotTransparent( *pCurrAct, aMapModeVDev ) ) bStillBackground=false; // non-transparent action, possibly // not uniform else // extend current bounds (next uniform action // needs to fully cover this area) aBackgroundComponent.aBounds.Union( ImplCalcActionBounds(*pCurrAct, aMapModeVDev) ); break; } } // execute action to get correct MapModes etc. pCurrAct->Execute( &aMapModeVDev ); pCurrAct=const_cast(rInMtf).NextAction(); ++nActionNum; } // clean up aMapModeVDev sal_uInt32 nCount = aMapModeVDev.GetGCStackDepth(); while( nCount-- ) aMapModeVDev.Pop(); ConnectedComponentsList aCCList; // list containing distinct sets of connected components as elements. // fast-forward until one after the last background action // (need to reconstruct map mode vdev state) nActionNum=0; pCurrAct=const_cast(rInMtf).FirstAction(); while( pCurrAct && nActionNum<=nLastBgAction ) { // up to and including last ink-generating background // action go to background component aBackgroundComponent.aComponentList.push_back( ::std::make_pair( pCurrAct, nActionNum) ); // execute action to get correct MapModes etc. pCurrAct->Execute( &aMapModeVDev ); pCurrAct=const_cast(rInMtf).NextAction(); ++nActionNum; } // // STAGE 2: Generate connected components list // =========================================== // // iterate over all actions (start where background action // search left off) for( ; pCurrAct; pCurrAct=const_cast(rInMtf).NextAction(), ++nActionNum ) { // execute action to get correct MapModes etc. pCurrAct->Execute( &aMapModeVDev ); // cache bounds of current action const Rectangle aBBCurrAct( ImplCalcActionBounds(*pCurrAct, aMapModeVDev) ); // accumulate collected bounds here, initialize with current action Rectangle aTotalBounds( aBBCurrAct ); // thus, // aTotalComponents.aBounds // is // empty // for // non-output-generating // actions bool bTreatSpecial( false ); ConnectedComponents aTotalComponents; // // STAGE 2.1: Search for intersecting cc entries // ============================================= // // if aBBCurrAct is empty, it will intersect with no // aCCList member. Thus, we can save the check. // Furthermore, this ensures that non-output-generating // actions get their own aCCList entry, which is necessary // when copying them to the output metafile (see stage 4 // below). // #107169# Wholly transparent objects need // not be considered for connected components, // too. Just put each of them into a separate // component. aTotalComponents.bIsFullyTransparent = !ImplIsNotTransparent(*pCurrAct, aMapModeVDev); if( !aBBCurrAct.IsEmpty() && !aTotalComponents.bIsFullyTransparent ) { if( !aBackgroundComponent.aComponentList.empty() && !aBackgroundComponent.aBounds.IsInside(aTotalBounds) ) { // it seems the background is not large enough. to // be on the safe side, combine with this component. aTotalBounds.Union( aBackgroundComponent.aBounds ); // extract all aCurr actions to aTotalComponents aTotalComponents.aComponentList.splice( aTotalComponents.aComponentList.end(), aBackgroundComponent.aComponentList ); if( aBackgroundComponent.bIsSpecial ) bTreatSpecial = true; } ConnectedComponentsList::iterator aCurrCC; const ConnectedComponentsList::iterator aLastCC( aCCList.end() ); bool bSomeComponentsChanged; // now, this is unfortunate: since changing anyone of // the aCCList elements (e.g. by merging or addition // of an action) might generate new intersection with // other aCCList elements, have to repeat the whole // element scanning, until nothing changes anymore. // Thus, this loop here makes us O(n^3) in the worst // case. do { // only loop here if 'intersects' branch below was hit bSomeComponentsChanged = false; // iterate over all current members of aCCList for( aCurrCC=aCCList.begin(); aCurrCC != aLastCC; ) { // first check if current element's bounds are // empty. This ensures that empty actions are not // merged into one component, as a matter of fact, // they have no position. // #107169# Wholly transparent objects need // not be considered for connected components, // too. Just put each of them into a separate // component. if( !aCurrCC->aBounds.IsEmpty() && !aCurrCC->bIsFullyTransparent && aCurrCC->aBounds.IsOver( aTotalBounds ) ) { // union the intersecting aCCList element into aTotalComponents // calc union bounding box aTotalBounds.Union( aCurrCC->aBounds ); // extract all aCurr actions to aTotalComponents aTotalComponents.aComponentList.splice( aTotalComponents.aComponentList.end(), aCurrCC->aComponentList ); if( aCurrCC->bIsSpecial ) bTreatSpecial = true; // remove and delete aCurrCC element from list (we've now merged its content) aCurrCC = aCCList.erase( aCurrCC ); // at least one component changed, need to rescan everything bSomeComponentsChanged = true; } else { ++aCurrCC; } } } while( bSomeComponentsChanged ); } // // STAGE 2.2: Determine special state for cc element // ================================================= // // now test whether the whole connected component must be // treated specially (i.e. rendered as a bitmap): if the // added action is the very first action, or all actions // before it are completely transparent, the connected // component need not be treated specially, not even if // the added action contains transparency. This is because // painting of transparent objects on _white background_ // works without alpha compositing (you just calculate the // color). Note that for the test "all objects before me // are transparent" no sorting is necessary, since the // added metaaction pCurrAct is always in the order the // metafile is painted. Generally, the order of the // metaactions in the ConnectedComponents are not // guaranteed to be the same as in the metafile. if( bTreatSpecial ) { // prev component(s) special -> this one, too aTotalComponents.bIsSpecial = true; } else if( !ImplIsActionSpecial( *pCurrAct ) ) { // added action and none of prev components special -> // this one normal, too aTotalComponents.bIsSpecial = false; } else { // added action is special and none of prev components // special -> do the detailed tests // can the action handle transparency correctly // (i.e. when painted on white background, does the // action still look correct)? if( !ImplIsActionHandlingTransparency( *pCurrAct ) ) { // no, action cannot handle its transparency on // a printer device, render to bitmap aTotalComponents.bIsSpecial = true; } else { // yes, action can handle its transparency, so // check whether we're on white background if( aTotalComponents.aComponentList.empty() ) { // nothing between pCurrAct and page // background -> don't be special aTotalComponents.bIsSpecial = false; } else { // #107169# Fixes abnove now ensure that _no_ // object in the list is fully transparent. Thus, // if the component list is not empty above, we // must assume that we have to treat this // component special. // there are non-transparent objects between // pCurrAct and the empty sheet of paper -> be // special, then aTotalComponents.bIsSpecial = true; } } } // // STAGE 2.3: Add newly generated CC list element // ============================================== // // set new bounds and add action to list aTotalComponents.aBounds = aTotalBounds; aTotalComponents.aComponentList.push_back( ::std::make_pair( pCurrAct, nActionNum) ); // add aTotalComponents as a new entry to aCCList aCCList.push_back( aTotalComponents ); DBG_ASSERT( !aTotalComponents.aComponentList.empty(), "Printer::GetPreparedMetaFile empty component" ); DBG_ASSERT( !aTotalComponents.aBounds.IsEmpty() || (aTotalComponents.aBounds.IsEmpty() && aTotalComponents.aComponentList.size() == 1), "Printer::GetPreparedMetaFile non-output generating actions must be solitary"); DBG_ASSERT( !aTotalComponents.bIsFullyTransparent || (aTotalComponents.bIsFullyTransparent && aTotalComponents.aComponentList.size() == 1), "Printer::GetPreparedMetaFile fully transparent actions must be solitary"); } // well now, we've got the list of disjunct connected // components. Now we've got to create a map, which contains // the corresponding aCCList element for every // metaaction. Later on, we always process the complete // metafile for each bitmap to be generated, but switch on // output only for actions contained in the then current // aCCList element. This ensures correct mapmode and attribute // settings for all cases. // maps mtf actions to CC list entries ::std::vector< const ConnectedComponents* > aCCList_MemberMap( rInMtf.GetActionCount() ); // iterate over all aCCList members and their contained metaactions ConnectedComponentsList::iterator aCurr( aCCList.begin() ); const ConnectedComponentsList::iterator aLast( aCCList.end() ); for( ; aCurr != aLast; ++aCurr ) { ComponentList::iterator aCurrentAction( aCurr->aComponentList.begin() ); const ComponentList::iterator aLastAction( aCurr->aComponentList.end() ); for( ; aCurrentAction != aLastAction; ++aCurrentAction ) { // set pointer to aCCList element for corresponding index aCCList_MemberMap[ aCurrentAction->second ] = &(*aCurr); } } // // STAGE 3.1: Output background mtf actions (if there are any) // =========================================================== // ComponentList::iterator aCurrAct( aBackgroundComponent.aComponentList.begin() ); const ComponentList::iterator aLastAct( aBackgroundComponent.aComponentList.end() ); for( ; aCurrAct != aLastAct; ++aCurrAct ) { // simply add this action (above, we inserted the actions // starting at index 0 up to and including nLastBgAction) rOutMtf.AddAction( ( aCurrAct->first->Duplicate(), aCurrAct->first ) ); } // // STAGE 3.2: Generate banded bitmaps for special regions // ==================================================== // Point aPageOffset; Size aTmpSize( GetOutputSizePixel() ); if( mpPDFWriter ) { aTmpSize = mpPDFWriter->getCurPageSize(); aTmpSize = LogicToPixel( aTmpSize, MapMode( MAP_POINT ) ); // also add error code to PDFWriter mpPDFWriter->insertError( vcl::PDFWriter::Warning_Transparency_Converted ); } else if( meOutDevType == OUTDEV_PRINTER ) { Printer* pThis = dynamic_cast(this); aPageOffset = pThis->GetPageOffsetPixel(); aPageOffset = Point( 0, 0 ) - aPageOffset; aTmpSize = pThis->GetPaperSizePixel(); } const Rectangle aOutputRect( aPageOffset, aTmpSize ); bool bTiling = dynamic_cast(this) != NULL; // iterate over all aCCList members and generate bitmaps for the special ones for( aCurr = aCCList.begin(); aCurr != aLast; ++aCurr ) { if( aCurr->bIsSpecial ) { Rectangle aBoundRect( aCurr->aBounds ); aBoundRect.Intersection( aOutputRect ); const double fBmpArea( (double) aBoundRect.GetWidth() * aBoundRect.GetHeight() ); const double fOutArea( (double) aOutputRect.GetWidth() * aOutputRect.GetHeight() ); // check if output doesn't exceed given size if( bReduceTransparency && bTransparencyAutoMode && ( fBmpArea > ( 0.25 * fOutArea ) ) ) { // output normally. Therefore, we simply clear the // special attribute, as everything non-special is // copied to rOutMtf further below. aCurr->bIsSpecial = false; } else { // create new bitmap action first if( aBoundRect.GetWidth() && aBoundRect.GetHeight() ) { Point aDstPtPix( aBoundRect.TopLeft() ); Size aDstSzPix; VirtualDevice aMapVDev; // here, we record only mapmode information aMapVDev.EnableOutput(sal_False); VirtualDevice aPaintVDev; // into this one, we render. aPaintVDev.SetBackground( aBackgroundComponent.aBgColor ); rOutMtf.AddAction( new MetaPushAction( PUSH_MAPMODE ) ); rOutMtf.AddAction( new MetaMapModeAction() ); aPaintVDev.SetDrawMode( GetDrawMode() ); while( aDstPtPix.Y() <= aBoundRect.Bottom() ) { aDstPtPix.X() = aBoundRect.Left(); aDstSzPix = bTiling ? Size( MAX_TILE_WIDTH, MAX_TILE_HEIGHT ) : aBoundRect.GetSize(); if( ( aDstPtPix.Y() + aDstSzPix.Height() - 1L ) > aBoundRect.Bottom() ) aDstSzPix.Height() = aBoundRect.Bottom() - aDstPtPix.Y() + 1L; while( aDstPtPix.X() <= aBoundRect.Right() ) { if( ( aDstPtPix.X() + aDstSzPix.Width() - 1L ) > aBoundRect.Right() ) aDstSzPix.Width() = aBoundRect.Right() - aDstPtPix.X() + 1L; if( !Rectangle( aDstPtPix, aDstSzPix ).Intersection( aBoundRect ).IsEmpty() && aPaintVDev.SetOutputSizePixel( aDstSzPix ) ) { aPaintVDev.Push(); aMapVDev.Push(); aMapVDev.mnDPIX = aPaintVDev.mnDPIX = mnDPIX; aMapVDev.mnDPIY = aPaintVDev.mnDPIY = mnDPIY; aPaintVDev.EnableOutput(sal_False); // iterate over all actions for( pCurrAct=const_cast(rInMtf).FirstAction(), nActionNum=0; pCurrAct; pCurrAct=const_cast(rInMtf).NextAction(), ++nActionNum ) { // enable output only for // actions that are members of // the current aCCList element // (aCurr) if( aCCList_MemberMap[nActionNum] == &(*aCurr) ) aPaintVDev.EnableOutput(sal_True); // but process every action const sal_uInt16 nType( pCurrAct->GetType() ); if( META_MAPMODE_ACTION == nType ) { pCurrAct->Execute( &aMapVDev ); MapMode aMtfMap( aMapVDev.GetMapMode() ); const Point aNewOrg( aMapVDev.PixelToLogic( aDstPtPix ) ); aMtfMap.SetOrigin( Point( -aNewOrg.X(), -aNewOrg.Y() ) ); aPaintVDev.SetMapMode( aMtfMap ); } else if( ( META_PUSH_ACTION == nType ) || ( META_POP_ACTION ) == nType ) { pCurrAct->Execute( &aMapVDev ); pCurrAct->Execute( &aPaintVDev ); } else if( META_GRADIENT_ACTION == nType ) { MetaGradientAction* pGradientAction = static_cast(pCurrAct); Printer* pPrinter = dynamic_cast< Printer* >(this); if( pPrinter ) pPrinter->DrawGradientEx( &aPaintVDev, pGradientAction->GetRect(), pGradientAction->GetGradient() ); else DrawGradient( pGradientAction->GetRect(), pGradientAction->GetGradient() ); } else { pCurrAct->Execute( &aPaintVDev ); } if( !( nActionNum % 8 ) ) Application::Reschedule(); } const sal_Bool bOldMap = mbMap; mbMap = aPaintVDev.mbMap = sal_False; Bitmap aBandBmp( aPaintVDev.GetBitmap( Point(), aDstSzPix ) ); // scale down bitmap, if requested if( bDownsampleBitmaps ) { aBandBmp = GetDownsampledBitmap( aDstSzPix, Point(), aBandBmp.GetSizePixel(), aBandBmp, nMaxBmpDPIX, nMaxBmpDPIY ); } rOutMtf.AddAction( new MetaCommentAction( "PRNSPOOL_TRANSPARENTBITMAP_BEGIN" ) ); rOutMtf.AddAction( new MetaBmpScaleAction( aDstPtPix, aDstSzPix, aBandBmp ) ); rOutMtf.AddAction( new MetaCommentAction( "PRNSPOOL_TRANSPARENTBITMAP_END" ) ); aPaintVDev.mbMap = sal_True; mbMap = bOldMap; aMapVDev.Pop(); aPaintVDev.Pop(); } // overlapping bands to avoid missing lines (e.g. PostScript) aDstPtPix.X() += aDstSzPix.Width(); } // overlapping bands to avoid missing lines (e.g. PostScript) aDstPtPix.Y() += aDstSzPix.Height(); } rOutMtf.AddAction( new MetaPopAction() ); } } } } // clean up aMapModeVDev nCount = aMapModeVDev.GetGCStackDepth(); while( nCount-- ) aMapModeVDev.Pop(); // // STAGE 4: Copy actions to output metafile // ======================================== // // iterate over all actions and duplicate the ones not in a // special aCCList member into rOutMtf for( pCurrAct=const_cast(rInMtf).FirstAction(), nActionNum=0; pCurrAct; pCurrAct=const_cast(rInMtf).NextAction(), ++nActionNum ) { const ConnectedComponents* pCurrAssociatedComponent = aCCList_MemberMap[nActionNum]; // NOTE: This relies on the fact that map-mode or draw // mode changing actions are solitary aCCList elements and // have empty bounding boxes, see comment on stage 2.1 // above if( pCurrAssociatedComponent && (pCurrAssociatedComponent->aBounds.IsEmpty() || !pCurrAssociatedComponent->bIsSpecial) ) { // #107169# Treat transparent bitmaps special, if they // are the first (or sole) action in their bounds // list. Note that we previously ensured that no // fully-transparent objects are before us here. if( ImplIsActionHandlingTransparency( *pCurrAct ) && pCurrAssociatedComponent->aComponentList.begin()->first == pCurrAct ) { // convert actions, where masked-out parts are of // given background color ImplConvertTransparentAction(rOutMtf, *pCurrAct, aMapModeVDev, aBackgroundComponent.aBgColor); } else { // simply add this action rOutMtf.AddAction( ( pCurrAct->Duplicate(), pCurrAct ) ); } pCurrAct->Execute(&aMapModeVDev); } } rOutMtf.SetPrefMapMode( rInMtf.GetPrefMapMode() ); rOutMtf.SetPrefSize( rInMtf.GetPrefSize() ); } return bTransparent; } // ----------------------------------------------------------------------------- Bitmap OutputDevice::GetDownsampledBitmap( const Size& rDstSz, const Point& rSrcPt, const Size& rSrcSz, const Bitmap& rBmp, long nMaxBmpDPIX, long nMaxBmpDPIY ) { Bitmap aBmp( rBmp ); if( !aBmp.IsEmpty() ) { Point aPoint; const Rectangle aBmpRect( aPoint, aBmp.GetSizePixel() ); Rectangle aSrcRect( rSrcPt, rSrcSz ); // do cropping if necessary if( aSrcRect.Intersection( aBmpRect ) != aBmpRect ) { if( !aSrcRect.IsEmpty() ) aBmp.Crop( aSrcRect ); else aBmp.SetEmpty(); } if( !aBmp.IsEmpty() ) { // do downsampling if necessary Size aDstSizeTwip( PixelToLogic( LogicToPixel( rDstSz ), MAP_TWIP ) ); // #103209# Normalize size (mirroring has to happen outside of this method) aDstSizeTwip = Size( labs(aDstSizeTwip.Width()), labs(aDstSizeTwip.Height()) ); const Size aBmpSize( aBmp.GetSizePixel() ); const double fBmpPixelX = aBmpSize.Width(); const double fBmpPixelY = aBmpSize.Height(); const double fMaxPixelX = aDstSizeTwip.Width() * nMaxBmpDPIX / 1440.0; const double fMaxPixelY = aDstSizeTwip.Height() * nMaxBmpDPIY / 1440.0; // check, if the bitmap DPI exceeds the maximum DPI (allow 4 pixel rounding tolerance) if( ( ( fBmpPixelX > ( fMaxPixelX + 4 ) ) || ( fBmpPixelY > ( fMaxPixelY + 4 ) ) ) && ( fBmpPixelY > 0.0 ) && ( fMaxPixelY > 0.0 ) ) { // do scaling Size aNewBmpSize; const double fBmpWH = fBmpPixelX / fBmpPixelY; const double fMaxWH = fMaxPixelX / fMaxPixelY; if( fBmpWH < fMaxWH ) { aNewBmpSize.Width() = FRound( fMaxPixelY * fBmpWH ); aNewBmpSize.Height() = FRound( fMaxPixelY ); } else if( fBmpWH > 0.0 ) { aNewBmpSize.Width() = FRound( fMaxPixelX ); aNewBmpSize.Height() = FRound( fMaxPixelX / fBmpWH); } if( aNewBmpSize.Width() && aNewBmpSize.Height() ) aBmp.Scale( aNewBmpSize ); else aBmp.SetEmpty(); } } } return aBmp; } // ----------------------------------------------------------------------------- BitmapEx OutputDevice::GetDownsampledBitmapEx( const Size& rDstSz, const Point& rSrcPt, const Size& rSrcSz, const BitmapEx& rBmpEx, long nMaxBmpDPIX, long nMaxBmpDPIY ) { BitmapEx aBmpEx( rBmpEx ); if( !aBmpEx.IsEmpty() ) { Point aPoint; const Rectangle aBmpRect( aPoint, aBmpEx.GetSizePixel() ); Rectangle aSrcRect( rSrcPt, rSrcSz ); // do cropping if necessary if( aSrcRect.Intersection( aBmpRect ) != aBmpRect ) { if( !aSrcRect.IsEmpty() ) aBmpEx.Crop( aSrcRect ); else aBmpEx.SetEmpty(); } if( !aBmpEx.IsEmpty() ) { // do downsampling if necessary Size aDstSizeTwip( PixelToLogic( LogicToPixel( rDstSz ), MAP_TWIP ) ); // #103209# Normalize size (mirroring has to happen outside of this method) aDstSizeTwip = Size( labs(aDstSizeTwip.Width()), labs(aDstSizeTwip.Height()) ); const Size aBmpSize( aBmpEx.GetSizePixel() ); const double fBmpPixelX = aBmpSize.Width(); const double fBmpPixelY = aBmpSize.Height(); const double fMaxPixelX = aDstSizeTwip.Width() * nMaxBmpDPIX / 1440.0; const double fMaxPixelY = aDstSizeTwip.Height() * nMaxBmpDPIY / 1440.0; // check, if the bitmap DPI exceeds the maximum DPI (allow 4 pixel rounding tolerance) if( ( ( fBmpPixelX > ( fMaxPixelX + 4 ) ) || ( fBmpPixelY > ( fMaxPixelY + 4 ) ) ) && ( fBmpPixelY > 0.0 ) && ( fMaxPixelY > 0.0 ) ) { // do scaling Size aNewBmpSize; const double fBmpWH = fBmpPixelX / fBmpPixelY; const double fMaxWH = fMaxPixelX / fMaxPixelY; if( fBmpWH < fMaxWH ) { aNewBmpSize.Width() = FRound( fMaxPixelY * fBmpWH ); aNewBmpSize.Height() = FRound( fMaxPixelY ); } else if( fBmpWH > 0.0 ) { aNewBmpSize.Width() = FRound( fMaxPixelX ); aNewBmpSize.Height() = FRound( fMaxPixelX / fBmpWH); } if( aNewBmpSize.Width() && aNewBmpSize.Height() ) aBmpEx.Scale( aNewBmpSize ); else aBmpEx.SetEmpty(); } } } return aBmpEx; } // ----------------------------------------------------------------------------- void Printer::DrawGradientEx( OutputDevice* pOut, const Rectangle& rRect, const Gradient& rGradient ) { const PrinterOptions& rPrinterOptions = GetPrinterOptions(); if( rPrinterOptions.IsReduceGradients() ) { if( PRINTER_GRADIENT_STRIPES == rPrinterOptions.GetReducedGradientMode() ) { if( !rGradient.GetSteps() || ( rGradient.GetSteps() > rPrinterOptions.GetReducedGradientStepCount() ) ) { Gradient aNewGradient( rGradient ); aNewGradient.SetSteps( rPrinterOptions.GetReducedGradientStepCount() ); pOut->DrawGradient( rRect, aNewGradient ); } else pOut->DrawGradient( rRect, rGradient ); } else { const Color& rStartColor = rGradient.GetStartColor(); const Color& rEndColor = rGradient.GetEndColor(); const long nR = ( ( (long) rStartColor.GetRed() * rGradient.GetStartIntensity() ) / 100L + ( (long) rEndColor.GetRed() * rGradient.GetEndIntensity() ) / 100L ) >> 1; const long nG = ( ( (long) rStartColor.GetGreen() * rGradient.GetStartIntensity() ) / 100L + ( (long) rEndColor.GetGreen() * rGradient.GetEndIntensity() ) / 100L ) >> 1; const long nB = ( ( (long) rStartColor.GetBlue() * rGradient.GetStartIntensity() ) / 100L + ( (long) rEndColor.GetBlue() * rGradient.GetEndIntensity() ) / 100L ) >> 1; const Color aColor( (sal_uInt8) nR, (sal_uInt8) nG, (sal_uInt8) nB ); pOut->Push( PUSH_LINECOLOR | PUSH_FILLCOLOR ); pOut->SetLineColor( aColor ); pOut->SetFillColor( aColor ); pOut->DrawRect( rRect ); pOut->Pop(); } } else pOut->DrawGradient( rRect, rGradient ); } // ----------------------------------------------------------------------------- void Printer::DrawGradientEx( OutputDevice* pOut, const PolyPolygon& rPolyPoly, const Gradient& rGradient ) { const PrinterOptions& rPrinterOptions = GetPrinterOptions(); if( rPrinterOptions.IsReduceGradients() ) { if( PRINTER_GRADIENT_STRIPES == rPrinterOptions.GetReducedGradientMode() ) { if( !rGradient.GetSteps() || ( rGradient.GetSteps() > rPrinterOptions.GetReducedGradientStepCount() ) ) { Gradient aNewGradient( rGradient ); aNewGradient.SetSteps( rPrinterOptions.GetReducedGradientStepCount() ); pOut->DrawGradient( rPolyPoly, aNewGradient ); } else pOut->DrawGradient( rPolyPoly, rGradient ); } else { const Color& rStartColor = rGradient.GetStartColor(); const Color& rEndColor = rGradient.GetEndColor(); const long nR = ( ( (long) rStartColor.GetRed() * rGradient.GetStartIntensity() ) / 100L + ( (long) rEndColor.GetRed() * rGradient.GetEndIntensity() ) / 100L ) >> 1; const long nG = ( ( (long) rStartColor.GetGreen() * rGradient.GetStartIntensity() ) / 100L + ( (long) rEndColor.GetGreen() * rGradient.GetEndIntensity() ) / 100L ) >> 1; const long nB = ( ( (long) rStartColor.GetBlue() * rGradient.GetStartIntensity() ) / 100L + ( (long) rEndColor.GetBlue() * rGradient.GetEndIntensity() ) / 100L ) >> 1; const Color aColor( (sal_uInt8) nR, (sal_uInt8) nG, (sal_uInt8) nB ); pOut->Push( PUSH_LINECOLOR | PUSH_FILLCOLOR ); pOut->SetLineColor( aColor ); pOut->SetFillColor( aColor ); pOut->DrawPolyPolygon( rPolyPoly ); pOut->Pop(); } } else pOut->DrawGradient( rPolyPoly, rGradient ); }