1<?xml version="1.0" encoding="UTF-8"?> 2 3 4<!--*********************************************************************** 5 * 6 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 7 * 8 * Copyright 2000, 2010 Oracle and/or its affiliates. 9 * 10 * OpenOffice.org - a multi-platform office productivity suite 11 * 12 * This file is part of OpenOffice.org. 13 * 14 * OpenOffice.org is free software: you can redistribute it and/or modify 15 * it under the terms of the GNU Lesser General Public License version 3 16 * only, as published by the Free Software Foundation. 17 * 18 * OpenOffice.org is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU Lesser General Public License version 3 for more details 22 * (a copy is included in the LICENSE file that accompanied this code). 23 * 24 * You should have received a copy of the GNU Lesser General Public License 25 * version 3 along with OpenOffice.org. If not, see 26 * <http://www.openoffice.org/license.html> 27 * for a copy of the LGPLv3 License. 28 * 29 ************************************************************************--> 30 31<helpdocument version="1.0"> 32<meta> 33<topic id="textsbasicshared03080101xml" indexer="include" status="PUBLISH"> 34<title id="tit" xml-lang="en-US">Atn Function [Runtime]</title> 35<filename>/text/sbasic/shared/03080101.xhp</filename> 36</topic> 37<history> 38<created date="2003-10-31T00:00:00">Sun Microsystems, Inc.</created> 39<lastedited date="2004-08-24T09:41:00">converted from old format - fpe</lastedited> 40</history> 41</meta> 42<body> 43<section id="atn"> 44<bookmark xml-lang="en-US" branch="index" id="bm_id3150616"><bookmark_value>Atn function</bookmark_value> 45</bookmark> 46<paragraph role="heading" id="hd_id3150616" xml-lang="en-US" level="1" l10n="U" oldref="1"><link href="text/sbasic/shared/03080101.xhp" name="Atn Function [Runtime]">Atn Function [Runtime]</link></paragraph> 47<paragraph role="paragraph" id="par_id3149346" xml-lang="en-US" l10n="U" oldref="2">Trigonometric function that returns the arctangent of a numeric expression. The return value is in the range -Pi/2 to +Pi/2.</paragraph> 48</section> 49<paragraph role="paragraph" id="par_id3143271" xml-lang="en-US" l10n="U" oldref="3">The arctangent is the inverse of the tangent function. The Atn Function returns the angle "Alpha", expressed in radians, using the tangent of this angle. The function can also return the angle "Alpha" by comparing the ratio of the length of the side that is opposite of the angle to the length of the side that is adjacent to the angle in a right-angled triangle.</paragraph> 50<paragraph role="paragraph" id="par_id3145315" xml-lang="en-US" l10n="U" oldref="4">Atn(side opposite the angle/side adjacent to angle)= Alpha</paragraph> 51<paragraph role="heading" id="hd_id3149669" xml-lang="en-US" level="2" l10n="U" oldref="5">Syntax:</paragraph> 52<paragraph role="paragraph" id="par_id3148947" xml-lang="en-US" l10n="U" oldref="6">Atn (Number)</paragraph> 53<paragraph role="heading" id="hd_id3148664" xml-lang="en-US" level="2" l10n="U" oldref="7">Return value:</paragraph> 54<paragraph role="paragraph" id="par_id3150359" xml-lang="en-US" l10n="U" oldref="8">Double</paragraph> 55<paragraph role="heading" id="hd_id3148798" xml-lang="en-US" level="2" l10n="U" oldref="9">Parameters:</paragraph> 56<paragraph role="paragraph" id="par_id3156212" xml-lang="en-US" l10n="U" oldref="10"> 57<emph>Number:</emph> Any numerical expression that represents the ratio of two sides of a right triangle. The Atn function returns the corresponding angle in radians (arctangent).</paragraph> 58<paragraph role="paragraph" id="par_id3153192" xml-lang="en-US" l10n="U" oldref="11">To convert radians to degrees, multiply radians by 180/pi.</paragraph> 59<paragraph role="paragraph" id="par_id3147230" xml-lang="en-US" l10n="U" oldref="12">degree=(radian*180)/pi</paragraph> 60<paragraph role="paragraph" id="par_id3125864" xml-lang="en-US" l10n="U" oldref="13">radian=(degree*pi)/180</paragraph> 61<paragraph role="paragraph" id="par_id3159252" xml-lang="en-US" l10n="U" oldref="14">Pi is here the fixed circle constant with the rounded value 3.14159.</paragraph> 62<embed href="text/sbasic/shared/00000003.xhp#errorcode"/> 63<embed href="text/sbasic/shared/00000003.xhp#err5"/> 64<paragraph role="heading" id="hd_id3153142" xml-lang="en-US" level="2" l10n="U" oldref="15">Example:</paragraph> 65<paragraph role="paragraph" id="par_id3146985" xml-lang="en-US" l10n="U" oldref="16">REM The following example calculates for a right-angled triangle</paragraph> 66<paragraph role="paragraph" id="par_id3145750" xml-lang="en-US" l10n="U" oldref="17">REM the angle Alpha from the tangent of the angle Alpha:</paragraph> 67<paragraph role="paragraph" id="par_id3146975" xml-lang="en-US" l10n="U" oldref="18">Sub ExampleATN</paragraph> 68<paragraph role="paragraph" id="par_id3151112" xml-lang="en-US" l10n="U" oldref="19">REM rounded Pi = 3.14159 is a predefined constant</paragraph> 69<paragraph role="paragraph" id="par_id3159156" xml-lang="en-US" l10n="U" oldref="20">Dim d1 As Double</paragraph> 70<paragraph role="paragraph" id="par_id3147435" xml-lang="en-US" l10n="U" oldref="21">Dim d2 As Double</paragraph> 71<paragraph role="paragraph" id="par_id3149262" xml-lang="en-US" l10n="U" oldref="22">d1 = InputBox$ ("Enter the length of the side adjacent to the angle: ","Adjacent")</paragraph> 72<paragraph role="paragraph" id="par_id3149482" xml-lang="en-US" l10n="U" oldref="23">d2 = InputBox$ ("Enter the length of the side opposite the angle: ","Opposite")</paragraph> 73<paragraph role="paragraph" id="par_id3155415" xml-lang="en-US" l10n="U" oldref="24">Print "The Alpha angle is"; (atn (d2/d1) * 180 / Pi); " degrees"</paragraph> 74<paragraph role="paragraph" id="par_id3149959" xml-lang="en-US" l10n="U" oldref="25">End Sub</paragraph> 75</body> 76</helpdocument> 77