1<?xml version="1.0" encoding="UTF-8"?> 2 3 4<!--*********************************************************************** 5 * 6 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 7 * 8 * Copyright 2000, 2010 Oracle and/or its affiliates. 9 * 10 * OpenOffice.org - a multi-platform office productivity suite 11 * 12 * This file is part of OpenOffice.org. 13 * 14 * OpenOffice.org is free software: you can redistribute it and/or modify 15 * it under the terms of the GNU Lesser General Public License version 3 16 * only, as published by the Free Software Foundation. 17 * 18 * OpenOffice.org is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU Lesser General Public License version 3 for more details 22 * (a copy is included in the LICENSE file that accompanied this code). 23 * 24 * You should have received a copy of the GNU Lesser General Public License 25 * version 3 along with OpenOffice.org. If not, see 26 * <http://www.openoffice.org/license.html> 27 * for a copy of the LGPLv3 License. 28 * 29 ************************************************************************--> 30 31<helpdocument version="1.0"> 32<meta> 33<topic id="textsbasicshared03080102xml" indexer="include" status="PUBLISH"> 34<title id="tit" xml-lang="en-US">Cos Function [Runtime]</title> 35<filename>/text/sbasic/shared/03080102.xhp</filename> 36</topic> 37<history> 38<created date="2003-10-31T00:00:00">Sun Microsystems, Inc.</created> 39<lastedited date="2004-08-24T11:09:53">converted from old format - fpe</lastedited> 40</history> 41</meta> 42<body> 43<section id="cos"> 44<bookmark xml-lang="en-US" branch="index" id="bm_id3154923"><bookmark_value>Cos function</bookmark_value> 45</bookmark> 46<paragraph role="heading" id="hd_id3154923" xml-lang="en-US" level="1" l10n="U" oldref="1"><link href="text/sbasic/shared/03080102.xhp" name="Cos Function [Runtime]">Cos Function [Runtime]</link></paragraph> 47<paragraph role="paragraph" id="par_id3159413" xml-lang="en-US" l10n="U" oldref="2">Calculates the cosine of an angle. The angle is specified in radians. The result lies between -1 and 1.</paragraph> 48</section> 49<paragraph role="paragraph" id="par_id3150358" xml-lang="en-US" l10n="U" oldref="3">Using the angle Alpha, the Cos-Function calculates the ratio of the length of the side that is adjacent to the angle, divided by the length of the hypotenuse in a right-angled triangle.</paragraph> 50<paragraph role="paragraph" id="par_id3154141" xml-lang="en-US" l10n="U" oldref="4">Cos(Alpha) = Adjacent/Hypotenuse</paragraph> 51<paragraph role="heading" id="hd_id3154125" xml-lang="en-US" level="2" l10n="U" oldref="5">Syntax:</paragraph> 52<paragraph role="paragraph" id="par_id3145172" xml-lang="en-US" l10n="U" oldref="6">Cos (Number)</paragraph> 53<paragraph role="heading" id="hd_id3156214" xml-lang="en-US" level="2" l10n="U" oldref="7">Return value:</paragraph> 54<paragraph role="paragraph" id="par_id3150449" xml-lang="en-US" l10n="U" oldref="8">Double</paragraph> 55<paragraph role="heading" id="hd_id3153969" xml-lang="en-US" level="2" l10n="U" oldref="9">Parameters:</paragraph> 56<paragraph role="paragraph" id="par_id3153770" xml-lang="en-US" l10n="U" oldref="10"> 57<emph>Number:</emph> Numeric expression that specifies an angle in radians that you want to calculate the cosine for.</paragraph> 58<paragraph role="paragraph" id="par_id3145749" xml-lang="en-US" l10n="U" oldref="11">To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.</paragraph> 59<paragraph role="paragraph" id="par_id3149664" xml-lang="en-US" l10n="U" oldref="12">degree=(radian*180)/pi</paragraph> 60<paragraph role="paragraph" id="par_id3146985" xml-lang="en-US" l10n="U" oldref="13">radian=(degree*pi)/180</paragraph> 61<paragraph role="paragraph" id="par_id3152885" xml-lang="en-US" l10n="U" oldref="14">Pi is here the fixed circle constant with the rounded value 3.14159...</paragraph> 62<embed href="text/sbasic/shared/00000003.xhp#errorcode"/> 63<embed href="text/sbasic/shared/00000003.xhp#err5"/> 64<paragraph role="heading" id="hd_id3153951" xml-lang="en-US" level="2" l10n="U" oldref="15">Example:</paragraph> 65<paragraph role="paragraph" id="par_id3155855" xml-lang="en-US" l10n="U" oldref="16">REM The following example allows for a right-angled triangle the input of</paragraph> 66<paragraph role="paragraph" id="par_id3149484" xml-lang="en-US" l10n="U" oldref="17">REM secant and angle (in degrees) and calculates the length of the hypotenuse:</paragraph> 67<paragraph role="paragraph" id="par_id3147428" xml-lang="en-US" l10n="U" oldref="18">Sub ExampleCosinus</paragraph> 68<paragraph role="paragraph" id="par_id3150010" xml-lang="en-US" l10n="U" oldref="19">REM rounded Pi = 3.14159</paragraph> 69<paragraph role="paragraph" id="par_id3149959" xml-lang="en-US" l10n="U" oldref="20">Dim d1 as Double, dAngle as Double</paragraph> 70<paragraph role="paragraph" id="par_id3144764" xml-lang="en-US" l10n="U" oldref="21">d1 = InputBox$ (""Enter the length of the adjacent side: ","Adjacent")</paragraph> 71<paragraph role="paragraph" id="par_id3154491" xml-lang="en-US" l10n="U" oldref="22">dAngle = InputBox$ ("Enter the angle Alpha (in degrees): ","Alpha")</paragraph> 72<paragraph role="paragraph" id="par_id3151074" xml-lang="en-US" l10n="U" oldref="23">Print "The length of the hypothenuse is"; (d1 / cos (dAngle * Pi / 180))</paragraph> 73<paragraph role="paragraph" id="par_id3149583" xml-lang="en-US" l10n="U" oldref="24">End Sub</paragraph> 74</body> 75</helpdocument> 76