1<?xml version="1.0" encoding="UTF-8"?>
2
3
4<!--***********************************************************************
5 *
6 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7 *
8 * Copyright 2000, 2010 Oracle and/or its affiliates.
9 *
10 * OpenOffice.org - a multi-platform office productivity suite
11 *
12 * This file is part of OpenOffice.org.
13 *
14 * OpenOffice.org is free software: you can redistribute it and/or modify
15 * it under the terms of the GNU Lesser General Public License version 3
16 * only, as published by the Free Software Foundation.
17 *
18 * OpenOffice.org is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU Lesser General Public License version 3 for more details
22 * (a copy is included in the LICENSE file that accompanied this code).
23 *
24 * You should have received a copy of the GNU Lesser General Public License
25 * version 3 along with OpenOffice.org.  If not, see
26 * <http://www.openoffice.org/license.html>
27 * for a copy of the LGPLv3 License.
28 *
29 ************************************************************************-->
30
31<helpdocument version="1.0">
32<meta>
33<topic id="textsbasicshared03080102xml" indexer="include" status="PUBLISH">
34<title id="tit" xml-lang="en-US">Cos Function [Runtime]</title>
35<filename>/text/sbasic/shared/03080102.xhp</filename>
36</topic>
37<history>
38<created date="2003-10-31T00:00:00">Sun Microsystems, Inc.</created>
39<lastedited date="2004-08-24T11:09:53">converted from old format - fpe</lastedited>
40</history>
41</meta>
42<body>
43<section id="cos">
44<bookmark xml-lang="en-US" branch="index" id="bm_id3154923"><bookmark_value>Cos function</bookmark_value>
45</bookmark>
46<paragraph role="heading" id="hd_id3154923" xml-lang="en-US" level="1" l10n="U" oldref="1"><link href="text/sbasic/shared/03080102.xhp" name="Cos Function [Runtime]">Cos Function [Runtime]</link></paragraph>
47<paragraph role="paragraph" id="par_id3159413" xml-lang="en-US" l10n="U" oldref="2">Calculates the cosine of an angle. The angle is specified in radians. The result lies between -1 and 1.</paragraph>
48</section>
49<paragraph role="paragraph" id="par_id3150358" xml-lang="en-US" l10n="U" oldref="3">Using the angle Alpha, the Cos-Function calculates the ratio of the length of the side that is adjacent to the angle, divided by the length of the hypotenuse in a right-angled triangle.</paragraph>
50<paragraph role="paragraph" id="par_id3154141" xml-lang="en-US" l10n="U" oldref="4">Cos(Alpha) = Adjacent/Hypotenuse</paragraph>
51<paragraph role="heading" id="hd_id3154125" xml-lang="en-US" level="2" l10n="U" oldref="5">Syntax:</paragraph>
52<paragraph role="paragraph" id="par_id3145172" xml-lang="en-US" l10n="U" oldref="6">Cos (Number)</paragraph>
53<paragraph role="heading" id="hd_id3156214" xml-lang="en-US" level="2" l10n="U" oldref="7">Return value:</paragraph>
54<paragraph role="paragraph" id="par_id3150449" xml-lang="en-US" l10n="U" oldref="8">Double</paragraph>
55<paragraph role="heading" id="hd_id3153969" xml-lang="en-US" level="2" l10n="U" oldref="9">Parameters:</paragraph>
56<paragraph role="paragraph" id="par_id3153770" xml-lang="en-US" l10n="U" oldref="10">
57<emph>Number:</emph> Numeric expression that specifies an angle in radians that you want to calculate the cosine for.</paragraph>
58<paragraph role="paragraph" id="par_id3145749" xml-lang="en-US" l10n="U" oldref="11">To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.</paragraph>
59<paragraph role="paragraph" id="par_id3149664" xml-lang="en-US" l10n="U" oldref="12">degree=(radian*180)/pi</paragraph>
60<paragraph role="paragraph" id="par_id3146985" xml-lang="en-US" l10n="U" oldref="13">radian=(degree*pi)/180</paragraph>
61<paragraph role="paragraph" id="par_id3152885" xml-lang="en-US" l10n="U" oldref="14">Pi is here the fixed circle constant with the rounded value 3.14159...</paragraph>
62<embed href="text/sbasic/shared/00000003.xhp#errorcode"/>
63<embed href="text/sbasic/shared/00000003.xhp#err5"/>
64<paragraph role="heading" id="hd_id3153951" xml-lang="en-US" level="2" l10n="U" oldref="15">Example:</paragraph>
65<paragraph role="paragraph" id="par_id3155855" xml-lang="en-US" l10n="U" oldref="16">REM The following example allows for a right-angled triangle the input of</paragraph>
66<paragraph role="paragraph" id="par_id3149484" xml-lang="en-US" l10n="U" oldref="17">REM secant and angle (in degrees) and calculates the length of the hypotenuse:</paragraph>
67<paragraph role="paragraph" id="par_id3147428" xml-lang="en-US" l10n="U" oldref="18">Sub ExampleCosinus</paragraph>
68<paragraph role="paragraph" id="par_id3150010" xml-lang="en-US" l10n="U" oldref="19">REM rounded Pi = 3.14159</paragraph>
69<paragraph role="paragraph" id="par_id3149959" xml-lang="en-US" l10n="U" oldref="20">Dim d1 as Double, dAngle as Double</paragraph>
70<paragraph role="paragraph" id="par_id3144764" xml-lang="en-US" l10n="U" oldref="21">d1 = InputBox$ (""Enter the length of the adjacent side: ","Adjacent")</paragraph>
71<paragraph role="paragraph" id="par_id3154491" xml-lang="en-US" l10n="U" oldref="22">dAngle = InputBox$ ("Enter the angle Alpha (in degrees): ","Alpha")</paragraph>
72<paragraph role="paragraph" id="par_id3151074" xml-lang="en-US" l10n="U" oldref="23">Print "The length of the hypothenuse is"; (d1 / cos (dAngle * Pi / 180))</paragraph>
73<paragraph role="paragraph" id="par_id3149583" xml-lang="en-US" l10n="U" oldref="24">End Sub</paragraph>
74</body>
75</helpdocument>
76