1<?xml version="1.0" encoding="UTF-8"?>
2
3<!--***********************************************************
4 *
5 * Licensed to the Apache Software Foundation (ASF) under one
6 * or more contributor license agreements.  See the NOTICE file
7 * distributed with this work for additional information
8 * regarding copyright ownership.  The ASF licenses this file
9 * to you under the Apache License, Version 2.0 (the
10 * "License"); you may not use this file except in compliance
11 * with the License.  You may obtain a copy of the License at
12 *
13 *   http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing,
16 * software distributed under the License is distributed on an
17 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
18 * KIND, either express or implied.  See the License for the
19 * specific language governing permissions and limitations
20 * under the License.
21 *
22 ***********************************************************-->
23
24<helpdocument version="1.0">
25<meta>
26<topic id="textscalc0104060182xml" indexer="include">
27<title xml-lang="en-US" id="tit">Statistical Functions Part Two</title>
28<filename>/text/scalc/01/04060182.xhp</filename>
29</topic>
30</meta>
31<body>
32<paragraph xml-lang="en-US" id="hd_id3154372" role="heading" level="1" l10n="U" oldref="1"><variable id="fh"><link href="text/scalc/01/04060182.xhp" name="Statistical Functions Part Two">Statistical Functions Part Two</link>
33</variable></paragraph>
34<sort order="asc">
35<section id="finv">
36<bookmark xml-lang="en-US" branch="index" id="bm_id3145388">
37<bookmark_value>FINV function</bookmark_value>
38<bookmark_value>inverse F probability distribution</bookmark_value>
39</bookmark><comment>mw added one entry</comment>
40<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FINV" id="bm_id3146113" localize="false"/>
41<paragraph xml-lang="en-US" id="hd_id3145388" role="heading" level="2" l10n="U" oldref="2">FINV</paragraph>
42<paragraph xml-lang="en-US" id="par_id3155089" role="paragraph" l10n="U" oldref="3"><ahelp hid="HID_FUNC_FINV">Returns the inverse of the F probability distribution.</ahelp> The F distribution is used for F tests in order to set the relation between two differing data sets.</paragraph>
43<paragraph xml-lang="en-US" id="hd_id3153816" role="heading" level="3" l10n="U" oldref="4">Syntax</paragraph>
44<paragraph xml-lang="en-US" id="par_id3153068" role="code" l10n="U" oldref="5">FINV(Number; DegreesFreedom1; DegreesFreedom2)</paragraph>
45<paragraph xml-lang="en-US" id="par_id3146866" role="paragraph" l10n="U" oldref="6">
46<emph>Number</emph> is probability value for which the inverse F distribution is to be calculated.</paragraph>
47<paragraph xml-lang="en-US" id="par_id3153914" role="paragraph" l10n="U" oldref="7">
48<emph>DegreesFreedom1</emph> is the number of degrees of freedom in the numerator of the F distribution.</paragraph>
49<paragraph xml-lang="en-US" id="par_id3148607" role="paragraph" l10n="U" oldref="8">
50<emph>DegreesFreedom2</emph> is the number of degrees of freedom in the denominator of the F distribution.</paragraph>
51<paragraph xml-lang="en-US" id="hd_id3156021" role="heading" level="3" l10n="U" oldref="9">Example</paragraph>
52<paragraph xml-lang="en-US" id="par_id3145073" role="paragraph" l10n="U" oldref="10">
53<item type="input">=FINV(0.5;5;10)</item> yields 0.93.</paragraph>
54</section>
55<section id="fisher">
56<bookmark xml-lang="en-US" branch="index" id="bm_id3150888">
57<bookmark_value>FISHER function</bookmark_value>
58</bookmark>
59<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FISHER" id="bm_id3146782" localize="false"/>
60<paragraph xml-lang="en-US" id="hd_id3150888" role="heading" level="2" l10n="U"
61oldref="12">FISHER</paragraph>
62<paragraph xml-lang="en-US" id="par_id3155384" role="paragraph" l10n="U" oldref="13"><ahelp hid="HID_FUNC_FISHER">Returns the Fisher transformation for x and creates a function close to a normal distribution.</ahelp></paragraph>
63<paragraph xml-lang="en-US" id="hd_id3149898" role="heading" level="3" l10n="U"
64oldref="14">Syntax</paragraph>
65<paragraph xml-lang="en-US" id="par_id3143220" role="code" l10n="U" oldref="15">FISHER(Number)</paragraph>
66<paragraph xml-lang="en-US" id="par_id3159228" role="paragraph" l10n="U" oldref="16">
67<emph>Number</emph> is the value to be transformed.</paragraph>
68<paragraph xml-lang="en-US" id="hd_id3154763" role="heading" level="3" l10n="U"
69oldref="17">Example</paragraph>
70<paragraph xml-lang="en-US" id="par_id3149383" role="paragraph" l10n="U" oldref="18">
71<item type="input">=FISHER(0.5)</item> yields 0.55.</paragraph>
72</section>
73<section id="fisherinv">
74<bookmark xml-lang="en-US" branch="index" id="bm_id3155758">
75<bookmark_value>FISHERINV function</bookmark_value>
76<bookmark_value>inverse of Fisher transformation</bookmark_value>
77</bookmark><comment>mw added one entry</comment>
78<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FISHERINV" id="bm_id3149317" localize="false"/>
79<paragraph xml-lang="en-US" id="hd_id3155758" role="heading" level="2" l10n="U"
80oldref="20">FISHERINV</paragraph>
81<paragraph xml-lang="en-US" id="par_id3154734" role="paragraph" l10n="U" oldref="21"><ahelp hid="HID_FUNC_FISHERINV">Returns the inverse of the Fisher transformation for x and creates a function close to a normal distribution.</ahelp></paragraph>
82<paragraph xml-lang="en-US" id="hd_id3155755" role="heading" level="3" l10n="U"
83oldref="22">Syntax</paragraph>
84<paragraph xml-lang="en-US" id="par_id3146108" role="code" l10n="U" oldref="23">FISHERINV(Number)</paragraph>
85<paragraph xml-lang="en-US" id="par_id3145115" role="paragraph" l10n="U" oldref="24">
86<emph>Number</emph> is the value that is to undergo reverse-transformation.</paragraph>
87<paragraph xml-lang="en-US" id="hd_id3155744" role="heading" level="3" l10n="U"
88oldref="25">Example</paragraph>
89<paragraph xml-lang="en-US" id="par_id3150432" role="paragraph" l10n="U" oldref="26">
90<item type="input">=FISHERINV(0.5)</item> yields 0.46.</paragraph>
91</section>
92<section id="ftest">
93<bookmark xml-lang="en-US" branch="index" id="bm_id3151390">
94<bookmark_value>FTEST function</bookmark_value>
95</bookmark>
96<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FTEST" id="bm_id3159263" localize="false"/>
97<paragraph xml-lang="en-US" id="hd_id3151390" role="heading" level="2" l10n="U"
98oldref="28">FTEST</paragraph>
99<paragraph xml-lang="en-US" id="par_id3150534" role="paragraph" l10n="U" oldref="29"><ahelp hid="HID_FUNC_FTEST">Returns the result of an F test.</ahelp></paragraph>
100<paragraph xml-lang="en-US" id="hd_id3166466" role="heading" level="3" l10n="U"
101oldref="30">Syntax</paragraph>
102<paragraph xml-lang="en-US" id="par_id3153024" role="code" l10n="U" oldref="31">FTEST(Data1; Data2)</paragraph>
103<paragraph xml-lang="en-US" id="par_id3150032" role="paragraph" l10n="U" oldref="32">
104<emph>Data1</emph> is the first record array.</paragraph>
105<paragraph xml-lang="en-US" id="par_id3153018" role="paragraph" l10n="U" oldref="33">
106<emph>Data2</emph> is the second record array.</paragraph>
107<paragraph xml-lang="en-US" id="hd_id3153123" role="heading" level="3" l10n="U"
108oldref="34">Example</paragraph>
109<paragraph xml-lang="en-US" id="par_id3159126" role="paragraph" l10n="U" oldref="35">
110<item type="input">=FTEST(A1:A30;B1:B12)</item> calculates whether the two data sets are different in their variance and returns the probability that both sets could have come from the same total population.</paragraph>
111</section>
112<section id="fdist">
113<bookmark xml-lang="en-US" branch="index" id="bm_id3150372">
114<bookmark_value>FDIST function</bookmark_value>
115</bookmark>
116<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_FVERT" id="bm_id3149722" localize="false"/>
117<paragraph xml-lang="en-US" id="hd_id3150372" role="heading" level="2" l10n="U"
118oldref="37">FDIST</paragraph>
119<paragraph xml-lang="en-US" id="par_id3152981" role="paragraph" l10n="U" oldref="38"><ahelp hid="HID_FUNC_FVERT">Calculates the values of an F distribution.</ahelp></paragraph>
120<paragraph xml-lang="en-US" id="hd_id3150484" role="heading" level="3" l10n="U"
121oldref="39">Syntax</paragraph>
122<paragraph xml-lang="en-US" id="par_id3145826" role="code" l10n="U" oldref="40">FDIST(Number; DegreesFreedom1; DegreesFreedom2)</paragraph>
123<paragraph xml-lang="en-US" id="par_id3150461" role="paragraph" l10n="U" oldref="41">
124<emph>Number</emph> is the value for which the F distribution is to be calculated.</paragraph>
125<paragraph xml-lang="en-US" id="par_id3150029" role="paragraph" l10n="U" oldref="42">
126<emph>degreesFreedom1</emph> is the degrees of freedom in the numerator in the F distribution.</paragraph>
127<paragraph xml-lang="en-US" id="par_id3146877" role="paragraph" l10n="U" oldref="43">
128<emph>degreesFreedom2</emph> is the degrees of freedom in the denominator in the F distribution.</paragraph>
129<paragraph xml-lang="en-US" id="hd_id3147423" role="heading" level="3" l10n="U"
130oldref="44">Example</paragraph>
131<paragraph xml-lang="en-US" id="par_id3150696" role="paragraph" l10n="U" oldref="45">
132<item type="input">=FDIST(0.8;8;12)</item> yields 0.61.</paragraph>
133</section>
134<section id="gamma">
135<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMA" id="bm_id0119200903221254" localize="false"/>
136<bookmark xml-lang="en-US" branch="index" id="bm_id0119200903223192">
137<bookmark_value>GAMMA function</bookmark_value>
138</bookmark>
139<paragraph xml-lang="en-US" id="hd_id0119200903205393" role="heading" level="2" l10n="NEW">GAMMA</paragraph>
140<paragraph xml-lang="en-US" id="par_id0119200903205379" role="paragraph" l10n="NEW"><ahelp hid=".">Returns the Gamma function value.</ahelp> Note that GAMMAINV is not the inverse of GAMMA, but of GAMMADIST.</paragraph>
141<paragraph xml-lang="en-US" id="hd_id0119200903271613" role="heading" level="3" l10n="NEW">Syntax</paragraph>
142<paragraph xml-lang="en-US" id="par_id0119200903271614" role="paragraph" l10n="NEW">
143<emph>Number</emph> is the number for which the Gamma function value is to be calculated.</paragraph>
144</section>
145<section id="gammainv">
146<bookmark xml-lang="en-US" branch="index" id="bm_id3154841">
147<bookmark_value>GAMMAINV function</bookmark_value>
148</bookmark>
149<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMAINV" id="bm_id3149249" localize="false"/>
150<paragraph xml-lang="en-US" id="hd_id3154841" role="heading" level="2" l10n="U"
151oldref="47">GAMMAINV</paragraph>
152<paragraph xml-lang="en-US" id="par_id3153932" role="paragraph" l10n="U" oldref="48"><ahelp hid="HID_FUNC_GAMMAINV">Returns the inverse of the Gamma cumulative distribution GAMMADIST.</ahelp> This function allows you to search for variables with different distribution.</paragraph>
153<paragraph xml-lang="en-US" id="hd_id3149949" role="heading" level="3" l10n="U"
154oldref="49">Syntax</paragraph>
155<paragraph xml-lang="en-US" id="par_id3155828" role="code" l10n="U" oldref="50">GAMMAINV(Number; Alpha; Beta)</paragraph>
156<paragraph xml-lang="en-US" id="par_id3145138" role="paragraph" l10n="U" oldref="51">
157<emph>Number</emph> is the probability value for which the inverse Gamma distribution is to be calculated.</paragraph>
158<paragraph xml-lang="en-US" id="par_id3152785" role="paragraph" l10n="U" oldref="52">
159<emph>Alpha</emph> is the parameter Alpha of the Gamma distribution.</paragraph>
160<paragraph xml-lang="en-US" id="par_id3154561" role="paragraph" l10n="U" oldref="53">
161<emph>Beta</emph> is the parameter Beta of the Gamma distribution.</paragraph>
162<paragraph xml-lang="en-US" id="hd_id3148734" role="heading" level="3" l10n="U"
163oldref="54">Example</paragraph>
164<paragraph xml-lang="en-US" id="par_id3153331" role="paragraph" l10n="U" oldref="55">
165<item type="input">=GAMMAINV(0.8;1;1)</item> yields 1.61.</paragraph>
166</section>
167<section id="gammaln">
168<bookmark xml-lang="en-US" branch="index" id="bm_id3154806">
169<bookmark_value>GAMMALN function</bookmark_value>
170<bookmark_value>natural logarithm of Gamma function</bookmark_value>
171</bookmark><comment>mw added one entry</comment>
172<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMALN" id="bm_id3149511" localize="false"/>
173<paragraph xml-lang="en-US" id="hd_id3154806" role="heading" level="2" l10n="U"
174oldref="57">GAMMALN</paragraph>
175<paragraph xml-lang="en-US" id="par_id3148572" role="paragraph" l10n="U" oldref="58"><ahelp hid="HID_FUNC_GAMMALN">Returns the natural logarithm of the Gamma function: G(x).</ahelp></paragraph>
176<paragraph xml-lang="en-US" id="hd_id3152999" role="heading" level="3" l10n="U"
177oldref="59">Syntax</paragraph>
178<paragraph xml-lang="en-US" id="par_id3153112" role="code" l10n="U" oldref="60">GAMMALN(Number)</paragraph>
179<paragraph xml-lang="en-US" id="par_id3154502" role="paragraph" l10n="U" oldref="61">
180<emph>Number</emph> is the value for which the natural logarithm of the Gamma function is to be calculated.</paragraph>
181<paragraph xml-lang="en-US" id="hd_id3153568" role="heading" level="3" l10n="U"
182oldref="62">Example</paragraph>
183<paragraph xml-lang="en-US" id="par_id3153730" role="paragraph" l10n="U" oldref="63">
184<item type="input">=GAMMALN(2)</item> yields 0.</paragraph>
185</section>
186<section id="gammadist">
187<bookmark xml-lang="en-US" branch="index" id="bm_id3150132">
188<bookmark_value>GAMMADIST function</bookmark_value>
189</bookmark>
190<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAMMAVERT" id="bm_id3154330" localize="false"/>
191<paragraph xml-lang="en-US" id="hd_id3150132" role="heading" level="2" l10n="U"
192oldref="65">GAMMADIST</paragraph>
193<paragraph xml-lang="en-US" id="par_id3155931" role="paragraph" l10n="U" oldref="66"><ahelp hid="HID_FUNC_GAMMAVERT">Returns the values of a Gamma distribution.</ahelp></paragraph>
194<paragraph xml-lang="en-US" id="par_id0119200903333675" role="paragraph" l10n="NEW">The inverse function is GAMMAINV.</paragraph>
195<paragraph xml-lang="en-US" id="hd_id3147373" role="heading" level="3" l10n="U"
196oldref="67">Syntax</paragraph>
197<paragraph xml-lang="en-US" id="par_id3155436" role="code" l10n="U" oldref="68">GAMMADIST(Number; Alpha; Beta; C)</paragraph>
198<paragraph xml-lang="en-US" id="par_id3150571" role="paragraph" l10n="U" oldref="69">
199<emph>Number</emph> is the value for which the Gamma distribution is to be calculated.</paragraph>
200<paragraph xml-lang="en-US" id="par_id3145295" role="paragraph" l10n="U" oldref="70">
201<emph>Alpha</emph> is the parameter Alpha of the Gamma distribution.</paragraph>
202<paragraph xml-lang="en-US" id="par_id3151015" role="paragraph" l10n="U" oldref="71">
203<emph>Beta</emph> is the parameter Beta of the Gamma distribution</paragraph>
204<paragraph xml-lang="en-US" id="par_id3157972" role="paragraph" l10n="CHG" oldref="72">
205<emph>C</emph> (optional) = 0 or False calculates the density function <emph>C</emph> = 1 or True calculates the distribution.</paragraph>
206<paragraph xml-lang="en-US" id="hd_id3149535" role="heading" level="3" l10n="U"
207oldref="73">Example</paragraph>
208<paragraph xml-lang="en-US" id="par_id3145354" role="paragraph" l10n="U" oldref="74">
209<item type="input">=GAMMADIST(2;1;1;1)</item> yields 0.86.</paragraph>
210</section>
211<section id="gauss">
212<bookmark xml-lang="en-US" branch="index" id="bm_id3150272">
213<bookmark_value>GAUSS function</bookmark_value>
214<bookmark_value>normal distribution; standard</bookmark_value>
215</bookmark><comment>mw added one entry</comment>
216<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GAUSS" id="bm_id3149388" localize="false"/>
217<paragraph xml-lang="en-US" id="hd_id3150272" role="heading" level="2" l10n="U"
218oldref="76">GAUSS</paragraph>
219<paragraph xml-lang="en-US" id="par_id3149030" role="paragraph" l10n="U" oldref="77"><ahelp hid="HID_FUNC_GAUSS">Returns the standard normal cumulative distribution.</ahelp></paragraph>
220<paragraph xml-lang="en-US" id="par_id2059694" role="paragraph" l10n="NEW">It is GAUSS(x)=NORMSDIST(x)-0.5</paragraph>
221<paragraph xml-lang="en-US" id="hd_id3153551" role="heading" level="3" l10n="U"
222oldref="78">Syntax</paragraph>
223<paragraph xml-lang="en-US" id="par_id3155368" role="code" l10n="U" oldref="79">GAUSS(Number)</paragraph>
224<paragraph xml-lang="en-US" id="par_id3153228" role="paragraph" l10n="CHG" oldref="80">
225<emph>Number</emph> is the value for which the value of the standard normal distribution is to be calculated.</paragraph>
226<paragraph xml-lang="en-US" id="hd_id3150691" role="heading" level="3" l10n="U"
227oldref="81">Example</paragraph>
228<paragraph xml-lang="en-US" id="par_id3154867" role="paragraph" l10n="U" oldref="82">
229<item type="input">=GAUSS(0.19)</item> = 0.08</paragraph>
230<paragraph xml-lang="en-US" id="par_id3148594" role="paragraph" l10n="U" oldref="83">
231<item type="input">=GAUSS(0.0375)</item> = 0.01</paragraph>
232</section>
233<section id="geomean">
234<bookmark xml-lang="en-US" branch="index" id="bm_id3148425">
235<bookmark_value>GEOMEAN function</bookmark_value>
236<bookmark_value>means;geometric</bookmark_value>
237</bookmark><comment>mw added one entry</comment>
238<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GEOMITTEL" id="bm_id3149777" localize="false"/>
239<paragraph xml-lang="en-US" id="hd_id3148425" role="heading" level="2" l10n="U"
240oldref="85">GEOMEAN</paragraph>
241<paragraph xml-lang="en-US" id="par_id3156257" role="paragraph" l10n="U" oldref="86"><ahelp hid="HID_FUNC_GEOMITTEL">Returns the geometric mean of a sample.</ahelp></paragraph>
242<paragraph xml-lang="en-US" id="hd_id3147167" role="heading" level="3" l10n="U"
243oldref="87">Syntax</paragraph>
244<paragraph xml-lang="en-US" id="par_id3153720" role="code" l10n="U" oldref="88">GEOMEAN(Number1; Number2; ...Number30)</paragraph>
245<paragraph xml-lang="en-US" id="par_id3152585" role="paragraph" l10n="CHG" oldref="89">
246<emph>Number1, Number2,...Number30</emph> are numeric arguments or ranges that represent a random sample.</paragraph>
247<paragraph xml-lang="en-US" id="hd_id3146146" role="heading" level="3" l10n="U"
248oldref="90">Example</paragraph>
249<paragraph xml-lang="en-US" id="par_id3149819" role="paragraph" l10n="U" oldref="92">
250<item type="input">=GEOMEAN(23;46;69)</item> = 41.79. The geometric mean value of this random sample is therefore 41.79.</paragraph>
251</section>
252<section id="trimmean">
253<bookmark xml-lang="en-US" branch="index" id="bm_id3152966">
254<bookmark_value>TRIMMEAN function</bookmark_value>
255<bookmark_value>means;of data set without margin data</bookmark_value>
256</bookmark><comment>mw added one entry</comment>
257<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GESTUTZTMITTEL" id="bm_id3145081" localize="false"/>
258<paragraph xml-lang="en-US" id="hd_id3152966" role="heading" level="2" l10n="U"
259oldref="94">TRIMMEAN</paragraph>
260<paragraph xml-lang="en-US" id="par_id3149716" role="paragraph" l10n="U" oldref="95"><ahelp hid="HID_FUNC_GESTUTZTMITTEL">Returns the mean of a data set without the Alpha percent of data at the margins.</ahelp></paragraph>
261<paragraph xml-lang="en-US" id="hd_id3149281" role="heading" level="3" l10n="U"
262oldref="96">Syntax</paragraph>
263<paragraph xml-lang="en-US" id="par_id3154821" role="code" l10n="U" oldref="97">TRIMMEAN(Data; Alpha)</paragraph>
264<paragraph xml-lang="en-US" id="par_id3155834" role="paragraph" l10n="U" oldref="98">
265<emph>Data</emph> is the array of data in the sample.</paragraph>
266<paragraph xml-lang="en-US" id="par_id3156304" role="paragraph" l10n="U" oldref="99">
267<emph>Alpha</emph> is the percentage of the marginal data that will not be taken into consideration.</paragraph>
268<paragraph xml-lang="en-US" id="hd_id3151180" role="heading" level="3" l10n="U"
269oldref="100">Example</paragraph>
270<paragraph xml-lang="en-US" id="par_id3156130" role="paragraph" l10n="U" oldref="101">
271<item type="input">=TRIMMEAN(A1:A50; 0.1)</item> calculates the mean value of numbers in A1:A50, without taking into consideration the 5 percent of the values representing the highest values and the 5 percent of the values representing the lowest ones. The percentage numbers refer to the amount of the untrimmed mean value, not to the number of summands.</paragraph>
272</section>
273<section id="ztest">
274<bookmark xml-lang="en-US" branch="index" id="bm_id3153216">
275<bookmark_value>ZTEST function</bookmark_value>
276</bookmark>
277<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_GTEST" id="bm_id3147569" localize="false"/>
278<paragraph xml-lang="en-US" id="hd_id3153216" role="heading" level="2" l10n="U"
279oldref="103">ZTEST</paragraph>
280<paragraph xml-lang="en-US" id="par_id3150758" role="paragraph" l10n="CHG" oldref="104"><ahelp hid="HID_FUNC_GTEST">Calculates the probability of observing a z-statistic greater than the one computed based on a sample.</ahelp></paragraph>
281<paragraph xml-lang="en-US" id="hd_id3150872" role="heading" level="3" l10n="U"
282oldref="105">Syntax</paragraph>
283<paragraph xml-lang="en-US" id="par_id3153274" role="code" l10n="CHG" oldref="106">ZTEST(Data; mu; Sigma)</paragraph>
284<paragraph xml-lang="en-US" id="par_id3156109" role="paragraph" l10n="CHG" oldref="107">
285<emph>Data</emph> is the given sample, drawn from a normally distributed population.</paragraph>
286<paragraph xml-lang="en-US" id="par_id3149977" role="paragraph" l10n="CHG" oldref="108">
287<emph>mu</emph> is the known mean of the population.</paragraph>
288<paragraph xml-lang="en-US" id="par_id3154740" role="paragraph" l10n="CHG" oldref="109">
289<emph>Sigma</emph> (optional) is the known standard deviation of the population. If omitted, the standard deviation of the given sample is used.</paragraph>
290<paragraph xml-lang="en-US" id="par_id0305200911372999" role="paragraph" l10n="NEW">See also the <link href="https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_ZTEST_function">Wiki page</link>.</paragraph>
291</section>
292<section id="harmean">
293<bookmark xml-lang="en-US" branch="index" id="bm_id3153623">
294<bookmark_value>HARMEAN function</bookmark_value>
295<bookmark_value>means;harmonic</bookmark_value>
296</bookmark><comment>mw added one entry</comment>
297<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_HARMITTEL" id="bm_id3154052" localize="false"/>
298<paragraph xml-lang="en-US" id="hd_id3153623" role="heading" level="2" l10n="U"
299oldref="113">HARMEAN</paragraph>
300<paragraph xml-lang="en-US" id="par_id3155102" role="paragraph" l10n="U" oldref="114"><ahelp hid="HID_FUNC_HARMITTEL">Returns the harmonic mean of a data set.</ahelp></paragraph>
301<paragraph xml-lang="en-US" id="hd_id3146900" role="heading" level="3" l10n="U"
302oldref="115">Syntax</paragraph>
303<paragraph xml-lang="en-US" id="par_id3149287" role="code" l10n="U" oldref="116">HARMEAN(Number1; Number2; ...Number30)</paragraph>
304<paragraph xml-lang="en-US" id="par_id3154303" role="paragraph" l10n="CHG" oldref="117">
305<emph>Number1,Number2,...Number30</emph> are up to 30 values or ranges, that can be used to calculate the harmonic mean.</paragraph>
306<paragraph xml-lang="en-US" id="hd_id3159179" role="heading" level="3" l10n="U"
307oldref="118">Example</paragraph>
308<paragraph xml-lang="en-US" id="par_id3146093" role="paragraph" l10n="U" oldref="120">
309<item type="input">=HARMEAN(23;46;69)</item> = 37.64. The harmonic mean of this random sample is thus 37.64</paragraph>
310</section>
311<section id="hypgeomdist">
312<bookmark xml-lang="en-US" branch="index" id="bm_id3152801">
313<bookmark_value>HYPGEOMDIST function</bookmark_value>
314<bookmark_value>sampling without replacement</bookmark_value>
315</bookmark><comment>mw added one entry</comment>
316<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_HYPGEOMVERT" id="bm_id3153910" localize="false"/>
317<paragraph xml-lang="en-US" id="hd_id3152801" role="heading" level="2" l10n="U"
318oldref="122">HYPGEOMDIST</paragraph>
319<paragraph xml-lang="en-US" id="par_id3159341" role="paragraph" l10n="U" oldref="123"><ahelp hid="HID_FUNC_HYPGEOMVERT">Returns the hypergeometric distribution.</ahelp></paragraph>
320<paragraph xml-lang="en-US" id="hd_id3154697" role="heading" level="3" l10n="U"
321oldref="124">Syntax</paragraph>
322<paragraph xml-lang="en-US" id="par_id3155388" role="code" l10n="U" oldref="125">HYPGEOMDIST(X; NSample; Successes; NPopulation)</paragraph>
323<paragraph xml-lang="en-US" id="par_id3154933" role="paragraph" l10n="U" oldref="126">
324<emph>X</emph> is the number of results achieved in the random sample.</paragraph>
325<paragraph xml-lang="en-US" id="par_id3153106" role="paragraph" l10n="U" oldref="127">
326<emph>NSample</emph> is the size of the random sample.</paragraph>
327<paragraph xml-lang="en-US" id="par_id3146992" role="paragraph" l10n="U" oldref="128">
328<emph>Successes</emph> is the number of possible results in the total population.</paragraph>
329<paragraph xml-lang="en-US" id="par_id3148826" role="paragraph" l10n="U" oldref="129">
330<emph>NPopulation</emph> is the size of the total population.</paragraph>
331<paragraph xml-lang="en-US" id="hd_id3150529" role="heading" level="3" l10n="U"
332oldref="130">Example</paragraph>
333<paragraph xml-lang="en-US" id="par_id3154904" role="paragraph" l10n="U" oldref="131">
334<item type="input">=HYPGEOMDIST(2;2;90;100)</item> yields 0.81. If 90 out of 100 pieces of buttered toast fall from the table and hit the floor with the buttered side first, then if 2 pieces of buttered toast are dropped from the table, the probability is 81%, that both will strike buttered side first.</paragraph>
335</section>
336</sort>
337<section id="relatedtopics">
338<embed href="text/scalc/01/04060100.xhp#drking"/>
339</section>
340</body>
341</helpdocument>
342