1<?xml version="1.0" encoding="UTF-8"?> 2 3 4<!--*********************************************************** 5 * 6 * Licensed to the Apache Software Foundation (ASF) under one 7 * or more contributor license agreements. See the NOTICE file 8 * distributed with this work for additional information 9 * regarding copyright ownership. The ASF licenses this file 10 * to you under the Apache License, Version 2.0 (the 11 * "License"); you may not use this file except in compliance 12 * with the License. You may obtain a copy of the License at 13 * 14 * http://www.apache.org/licenses/LICENSE-2.0 15 * 16 * Unless required by applicable law or agreed to in writing, 17 * software distributed under the License is distributed on an 18 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY 19 * KIND, either express or implied. See the License for the 20 * specific language governing permissions and limitations 21 * under the License. 22 * 23 ***********************************************************--> 24 25 26 27<helpdocument version="1.0"> 28<meta> 29<topic id="textsbasicshared03080104xml" indexer="include" status="PUBLISH"> 30<title id="tit" xml-lang="en-US">Tan Function [Runtime]</title> 31<filename>/text/sbasic/shared/03080104.xhp</filename> 32</topic> 33<history> 34<created date="2003-10-31T00:00:00">Sun Microsystems, Inc.</created> 35<lastedited date="2006-12-15T09:15:53">converted from old format - fpe</lastedited> 36</history> 37</meta> 38<body> 39<section id="tan"> 40<bookmark xml-lang="en-US" branch="index" id="bm_id3148550"><bookmark_value>Tan function</bookmark_value> 41</bookmark> 42<paragraph role="heading" id="hd_id3148550" xml-lang="en-US" level="1" l10n="U" oldref="1"><link href="text/sbasic/shared/03080104.xhp" name="Tan Function [Runtime]">Tan Function [Runtime]</link></paragraph> 43<paragraph role="paragraph" id="par_id3148663" xml-lang="en-US" l10n="CHG" oldref="2">Determines the tangent of an angle. The angle is specified in radians.<comment>i71396</comment></paragraph> 44</section> 45<paragraph role="paragraph" id="par_id3153379" xml-lang="en-US" l10n="U" oldref="3">Using the angle Alpha, the Tan Function calculates the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle in a right-angled triangle.</paragraph> 46<paragraph role="paragraph" id="par_id3154366" xml-lang="en-US" l10n="U" oldref="4">Tan(Alpha) = side opposite the angle/side adjacent to angle</paragraph> 47<paragraph role="heading" id="hd_id3145174" xml-lang="en-US" level="2" l10n="U" oldref="5">Syntax:</paragraph> 48<paragraph role="paragraph" id="par_id3151042" xml-lang="en-US" l10n="U" oldref="6">Tan (Number)</paragraph> 49<paragraph role="heading" id="hd_id3156214" xml-lang="en-US" level="2" l10n="U" oldref="7">Return value:</paragraph> 50<paragraph role="paragraph" id="par_id3156281" xml-lang="en-US" l10n="U" oldref="8">Double</paragraph> 51<paragraph role="heading" id="hd_id3155132" xml-lang="en-US" level="2" l10n="U" oldref="9">Parameters:</paragraph> 52<paragraph role="paragraph" id="par_id3145786" xml-lang="en-US" l10n="U" oldref="10"> 53<emph>Number:</emph> Any numeric expression that you want to calculate the tangent for (in radians).</paragraph> 54<paragraph role="paragraph" id="par_id3153728" xml-lang="en-US" l10n="U" oldref="11">To convert degrees to radians, multiply by Pi/180. To convert radians to degrees, multiply by 180/Pi.</paragraph> 55<paragraph role="paragraph" id="par_id3155414" xml-lang="en-US" l10n="CHG" oldref="12">degrees=(radiant*180)/Pi</paragraph> 56<paragraph role="paragraph" id="par_id3146975" xml-lang="en-US" l10n="CHG" oldref="13">radiant=(degrees*Pi)/180</paragraph> 57<paragraph role="paragraph" id="par_id3147434" xml-lang="en-US" l10n="U" oldref="14">Pi is approximately 3.141593.</paragraph> 58<embed href="text/sbasic/shared/00000003.xhp#errorcode"/> 59<embed href="text/sbasic/shared/00000003.xhp#err5"/> 60<paragraph role="heading" id="hd_id3149483" xml-lang="en-US" level="2" l10n="U" oldref="15">Example:</paragraph> 61<paragraph role="paragraph" id="par_id3148646" xml-lang="en-US" l10n="U" oldref="16">REM In this example, the following entry is possible for a right-angled triangle:</paragraph> 62<paragraph role="paragraph" id="par_id3150012" xml-lang="en-US" l10n="U" oldref="17">REM The side opposite the angle and the angle (in degrees) to calculate the length of the side adjacent to the angle:</paragraph> 63<paragraph role="paragraph" id="par_id3151115" xml-lang="en-US" l10n="U" oldref="18">Sub ExampleTangens</paragraph> 64<paragraph role="paragraph" id="par_id3153158" xml-lang="en-US" l10n="U" oldref="19">REM Pi = 3.1415926 is a pre-defined variable</paragraph> 65<paragraph role="paragraph" id="par_id3145800" xml-lang="en-US" l10n="U" oldref="20">Dim d1 as Double</paragraph> 66<paragraph role="paragraph" id="par_id3150417" xml-lang="en-US" l10n="U" oldref="21">Dim dAlpha as Double</paragraph> 67<paragraph role="paragraph" id="par_id3145252" xml-lang="en-US" l10n="U" oldref="22">d1 = InputBox$ ("Enter the length of the side opposite the angle: ","opposite")</paragraph> 68<paragraph role="paragraph" id="par_id3149582" xml-lang="en-US" l10n="U" oldref="23">dAlpha = InputBox$ ("Enter the Alpha angle (in degrees): ","Alpha")</paragraph> 69<paragraph role="paragraph" id="par_id3154016" xml-lang="en-US" l10n="U" oldref="24">Print "the length of the side adjacent the angle is"; (d1 / tan (dAlpha * Pi / 180))</paragraph> 70<paragraph role="paragraph" id="par_id3154731" xml-lang="en-US" l10n="U" oldref="25">End Sub</paragraph> 71</body> 72</helpdocument> 73