1 /**************************************************************
2 *
3 * Licensed to the Apache Software Foundation (ASF) under one
4 * or more contributor license agreements. See the NOTICE file
5 * distributed with this work for additional information
6 * regarding copyright ownership. The ASF licenses this file
7 * to you under the Apache License, Version 2.0 (the
8 * "License"); you may not use this file except in compliance
9 * with the License. You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing,
14 * software distributed under the License is distributed on an
15 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 * KIND, either express or implied. See the License for the
17 * specific language governing permissions and limitations
18 * under the License.
19 *
20 *************************************************************/
21
22
23
24 // MARKER(update_precomp.py): autogen include statement, do not remove
25 #include "precompiled_slideshow.hxx"
26
27 #include <canvas/debug.hxx>
28 #include <basegfx/matrix/b2dhommatrix.hxx>
29 #include <basegfx/point/b2dpoint.hxx>
30 #include <basegfx/polygon/b2dpolygon.hxx>
31 #include <basegfx/matrix/b2dhommatrixtools.hxx>
32 #include "snakewipe.hxx"
33 #include "transitiontools.hxx"
34
35
36 namespace slideshow {
37 namespace internal {
38
SnakeWipe(sal_Int32 nElements,bool diagonal,bool flipOnYAxis)39 SnakeWipe::SnakeWipe( sal_Int32 nElements, bool diagonal, bool flipOnYAxis )
40 : m_sqrtElements( static_cast<sal_Int32>(
41 sqrt( static_cast<double>(nElements) ) ) ),
42 m_elementEdge( 1.0 / m_sqrtElements ),
43 m_diagonal(diagonal),
44 m_flipOnYAxis(flipOnYAxis)
45 {
46 }
47
calcSnake(double t) const48 ::basegfx::B2DPolyPolygon SnakeWipe::calcSnake( double t ) const
49 {
50 ::basegfx::B2DPolyPolygon res;
51 const double area = (t * m_sqrtElements * m_sqrtElements);
52 const sal_Int32 line_ = (static_cast<sal_Int32>(area) / m_sqrtElements);
53 const double line = ::basegfx::pruneScaleValue(
54 static_cast<double>(line_) / m_sqrtElements );
55 const double col = ::basegfx::pruneScaleValue(
56 (area - (line_ * m_sqrtElements)) / m_sqrtElements );
57
58 if (! ::basegfx::fTools::equalZero( line )) {
59 ::basegfx::B2DPolygon poly;
60 poly.append( ::basegfx::B2DPoint( 0.0, 0.0 ) );
61 poly.append( ::basegfx::B2DPoint( 0.0, line ) );
62 poly.append( ::basegfx::B2DPoint( 1.0, line ) );
63 poly.append( ::basegfx::B2DPoint( 1.0, 0.0 ) );
64 poly.setClosed(true);
65 res.append(poly);
66 }
67 if (! ::basegfx::fTools::equalZero( col ))
68 {
69 double offset = 0.0;
70 if ((line_ & 1) == 1) {
71 // odd line: => right to left
72 offset = (1.0 - col);
73 }
74 ::basegfx::B2DPolygon poly;
75 poly.append( ::basegfx::B2DPoint( offset, line ) );
76 poly.append( ::basegfx::B2DPoint( offset,
77 line + m_elementEdge ) );
78 poly.append( ::basegfx::B2DPoint( offset + col,
79 line + m_elementEdge ) );
80 poly.append( ::basegfx::B2DPoint( offset + col, line ) );
81 poly.setClosed(true);
82 res.append(poly);
83 }
84
85 return res;
86 }
87
calcHalfDiagonalSnake(double t,bool in) const88 ::basegfx::B2DPolyPolygon SnakeWipe::calcHalfDiagonalSnake(
89 double t, bool in ) const
90 {
91 ::basegfx::B2DPolyPolygon res;
92
93 if (in) {
94 const double sqrtArea2 = sqrt( t * m_sqrtElements * m_sqrtElements );
95 const double edge = ::basegfx::pruneScaleValue(
96 static_cast<double>( static_cast<sal_Int32>(sqrtArea2) ) /
97 m_sqrtElements );
98
99 ::basegfx::B2DPolygon poly;
100 if (! ::basegfx::fTools::equalZero( edge )) {
101 poly.append( ::basegfx::B2DPoint( 0.0, 0.0 ) );
102 poly.append( ::basegfx::B2DPoint( 0.0, edge ) );
103 poly.append( ::basegfx::B2DPoint( edge, 0.0 ) );
104 poly.setClosed(true);
105 res.append(poly);
106 }
107 const double a = (M_SQRT1_2 / m_sqrtElements);
108 const double d = (sqrtArea2 - static_cast<sal_Int32>(sqrtArea2));
109 const double len = (t * M_SQRT2 * d);
110 const double height = ::basegfx::pruneScaleValue( M_SQRT1_2 / m_sqrtElements );
111 poly.clear();
112 poly.append( ::basegfx::B2DPoint( 0.0, 0.0 ) );
113 poly.append( ::basegfx::B2DPoint( 0.0, height ) );
114 poly.append( ::basegfx::B2DPoint( len + a, height ) );
115 poly.append( ::basegfx::B2DPoint( len + a, 0.0 ) );
116 poly.setClosed(true);
117 ::basegfx::B2DHomMatrix aTransform;
118
119 if ((static_cast<sal_Int32>(sqrtArea2) & 1) == 1)
120 {
121 // odd line
122 aTransform = basegfx::tools::createRotateB2DHomMatrix(M_PI_2 + M_PI_4);
123 aTransform.translate(edge + m_elementEdge, 0.0);
124 }
125 else
126 {
127 aTransform = basegfx::tools::createTranslateB2DHomMatrix(-a, 0.0);
128 aTransform.rotate( -M_PI_4 );
129 aTransform.translate( 0.0, edge );
130 }
131
132 poly.transform( aTransform );
133 res.append(poly);
134 }
135 else // out
136 {
137 const double sqrtArea2 = sqrt( t * m_sqrtElements * m_sqrtElements );
138 const double edge = ::basegfx::pruneScaleValue(
139 static_cast<double>( static_cast<sal_Int32>(sqrtArea2) ) /
140 m_sqrtElements );
141
142 ::basegfx::B2DPolygon poly;
143 if (! ::basegfx::fTools::equalZero( edge )) {
144 poly.append( ::basegfx::B2DPoint( 0.0, 1.0 ) );
145 poly.append( ::basegfx::B2DPoint( edge, 1.0 ) );
146 poly.append( ::basegfx::B2DPoint( 1.0, edge ) );
147 poly.append( ::basegfx::B2DPoint( 1.0, 0.0 ) );
148 poly.setClosed(true);
149 res.append(poly);
150 }
151 const double a = (M_SQRT1_2 / m_sqrtElements);
152 const double d = (sqrtArea2 - static_cast<sal_Int32>(sqrtArea2));
153 const double len = ((1.0 - t) * M_SQRT2 * d);
154 const double height = ::basegfx::pruneScaleValue( M_SQRT1_2 / m_sqrtElements );
155 poly.clear();
156 poly.append( ::basegfx::B2DPoint( 0.0, 0.0 ) );
157 poly.append( ::basegfx::B2DPoint( 0.0, height ) );
158 poly.append( ::basegfx::B2DPoint( len + a, height ) );
159 poly.append( ::basegfx::B2DPoint( len + a, 0.0 ) );
160 poly.setClosed(true);
161 ::basegfx::B2DHomMatrix aTransform;
162
163 if ((static_cast<sal_Int32>(sqrtArea2) & 1) == 1)
164 {
165 // odd line
166 aTransform = basegfx::tools::createTranslateB2DHomMatrix(0.0, -height);
167 aTransform.rotate( M_PI_2 + M_PI_4 );
168 aTransform.translate( 1.0, edge );
169 }
170 else
171 {
172 aTransform = basegfx::tools::createRotateB2DHomMatrix(-M_PI_4);
173 aTransform.translate( edge, 1.0 );
174 }
175 poly.transform( aTransform );
176 res.append(poly);
177 }
178
179 return res;
180 }
181
operator ()(double t)182 ::basegfx::B2DPolyPolygon SnakeWipe::operator () ( double t )
183 {
184 ::basegfx::B2DPolyPolygon res;
185 if (m_diagonal)
186 {
187 if (t >= 0.5) {
188 res.append( calcHalfDiagonalSnake( 1.0, true ) );
189 res.append( calcHalfDiagonalSnake( 2.0 * (t - 0.5), false ) );
190 }
191 else
192 res.append( calcHalfDiagonalSnake( 2.0 * t, true ) );
193 }
194 else
195 res = calcSnake(t);
196
197 return m_flipOnYAxis ? flipOnYAxis(res) : res;
198 }
199
operator ()(double t)200 ::basegfx::B2DPolyPolygon ParallelSnakesWipe::operator () ( double t )
201 {
202 ::basegfx::B2DPolyPolygon res;
203 if (m_diagonal)
204 {
205 OSL_ASSERT( m_opposite );
206 ::basegfx::B2DPolyPolygon half(
207 calcHalfDiagonalSnake( t, false /* out */ ) );
208 // flip on x axis and rotate 90 degrees:
209 basegfx::B2DHomMatrix aTransform(basegfx::tools::createScaleB2DHomMatrix(1.0, -1.0));
210 aTransform.translate( -0.5, 0.5 );
211 aTransform.rotate( M_PI_2 );
212 aTransform.translate( 0.5, 0.5 );
213 half.transform( aTransform );
214 half.flip();
215 res.append( half );
216
217 // rotate 180 degrees:
218 aTransform = basegfx::tools::createTranslateB2DHomMatrix(-0.5, -0.5);
219 aTransform.rotate( M_PI );
220 aTransform.translate( 0.5, 0.5 );
221 half.transform( aTransform );
222 res.append( half );
223 }
224 else
225 {
226 ::basegfx::B2DPolyPolygon half( calcSnake( t / 2.0 ) );
227 // rotate 90 degrees:
228 basegfx::B2DHomMatrix aTransform(basegfx::tools::createTranslateB2DHomMatrix(-0.5, -0.5));
229 aTransform.rotate( M_PI_2 );
230 aTransform.translate( 0.5, 0.5 );
231 half.transform( aTransform );
232 res.append( flipOnYAxis(half) );
233 res.append( m_opposite ? flipOnXAxis(half) : half );
234 }
235
236 return m_flipOnYAxis ? flipOnYAxis(res) : res;
237 }
238
239 }
240 }
241